Token Communication-Driven Multimodal Large Models in Resource-Constrained Multiuser Networks
- URL: http://arxiv.org/abs/2505.07841v1
- Date: Tue, 06 May 2025 14:17:05 GMT
- Title: Token Communication-Driven Multimodal Large Models in Resource-Constrained Multiuser Networks
- Authors: Junhe Zhang, Wanli Ni, Pengwei Wang, Dongyu Wang,
- Abstract summary: multimodal large models pose challenges for deploying intelligent applications at the wireless edge.<n>These constraints manifest as limited bandwidth, computational capacity, and stringent latency requirements.<n>We propose a token communication paradigm that facilitates decentralized proliferations across user devices and edge infrastructure.
- Score: 7.137830911253685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The proliferation of intelligent applications at the wireless edge, alongside the exponential growth of multimodal data, poses challenges for deploying multimodal large models (MLMs) in resource-constrained networks. These constraints manifest as limited bandwidth, computational capacity, and stringent latency requirements, particularly under low signal-to-noise ratio (SNR) conditions. To overcome these limitations, we propose a token communication paradigm that facilitates the decentralized deployment of MLMs across user devices and edge infrastructure (e.g., base stations). In this paradigm, task-relevant tokens are extracted from multimodal inputs and serve as the primary medium for communication between distributed model components. To align semantics and optimize transmission efficiency, we propose a dual-pronged approach: 1) We design a contrastive split fine-tuning method to project heterogeneous modalities into a shared feature space, enabling seamless interaction between model components while preserving modal-specific semantics. 2) We employ a lightweight compression technique to reduce the size of transmitted tokens, minimizing bandwidth consumption without sacrificing task-critical information. The proposed framework integrates collaborative fine-tuning of both the foundation model and multimodal transceivers, ensuring that token generation and utilization are tailored to specific downstream tasks. Simulation experiments conducted under different SNR conditions demonstrate that our method results in a $13.7\%$ improvement in test accuracy. Furthermore, our approach exhibits quicker convergence rates, even with reduced token lengths, highlighting the promise of token communication for facilitating more scalable and resilient MLM implementations in practical multiuser networks.
Related papers
- FindRec: Stein-Guided Entropic Flow for Multi-Modal Sequential Recommendation [50.438552588818]
We propose textbfFindRec (textbfFlexible unified textbfinformation textbfdisentanglement for multi-modal sequential textbfRecommendation)<n>A Stein kernel-based Integrated Information Coordination Module (IICM) theoretically guarantees distribution consistency between multimodal features and ID streams.<n>A cross-modal expert routing mechanism that adaptively filters and combines multimodal features based on their contextual relevance.
arXiv Detail & Related papers (2025-07-07T04:09:45Z) - Token Communication in the Era of Large Models: An Information Bottleneck-Based Approach [55.861432910722186]
UniToCom is a unified token communication paradigm that treats tokens as the fundamental units for both processing and wireless transmission.<n>We propose a generative information bottleneck (GenIB) principle, which facilitates the learning of tokens that preserve essential information.<n>We employ a causal Transformer-based multimodal large language model (MLLM) at the receiver to unify the processing of both discrete and continuous tokens.
arXiv Detail & Related papers (2025-07-02T14:03:01Z) - A Transfer Learning Framework for Multilayer Networks via Model Averaging [8.27209166988677]
Link prediction in multilayer networks is a key challenge in applications such as recommendation systems and protein-protein interaction prediction.<n>We propose a novel transfer learning framework for multilayer networks using a bi-level model averaging method.
arXiv Detail & Related papers (2025-06-14T11:32:31Z) - InfoMAE: Pair-Efficient Cross-Modal Alignment for Multimodal Time-Series Sensing Signals [9.648001493025204]
InfoMAE is a cross-modal alignment framework that tackles the challenge of multimodal pair efficiency under the SSL setting.<n>It enhances downstream multimodal tasks by over 60% with significantly improved multimodal pairing efficiency.<n>It also improves unimodal task accuracy by an average of 22%.
arXiv Detail & Related papers (2025-04-13T20:03:29Z) - Task-Oriented Feature Compression for Multimodal Understanding via Device-Edge Co-Inference [49.77734021302196]
We propose a task-oriented feature compression (TOFC) method for multimodal understanding in a device-edge co-inference framework.<n>To enhance compression efficiency, multiple entropy models are adaptively selected based on the characteristics of the visual features.<n>Results show that TOFC achieves up to 60% reduction in data transmission overhead and 50% reduction in system latency.
arXiv Detail & Related papers (2025-03-17T08:37:22Z) - SIMAC: A Semantic-Driven Integrated Multimodal Sensing And Communication Framework [22.924064428134507]
Single-modality sensing faces limitations in accuracy and capability, and its decoupled implementation with communication systems increases latency.<n>We propose a semantic-driven integrated multimodal sensing and communication framework to overcome these challenges.
arXiv Detail & Related papers (2025-03-11T01:04:42Z) - R-MTLLMF: Resilient Multi-Task Large Language Model Fusion at the Wireless Edge [78.26352952957909]
Multi-task large language models (MTLLMs) are important for many applications at the wireless edge, where users demand specialized models to handle multiple tasks efficiently.<n>The concept of model fusion via task vectors has emerged as an efficient approach for combining fine-tuning parameters to produce an MTLLM.<n>In this paper, the problem of enabling edge users to collaboratively craft such MTLMs via tasks vectors is studied, under the assumption of worst-case adversarial attacks.
arXiv Detail & Related papers (2024-11-27T10:57:06Z) - FedMFS: Federated Multimodal Fusion Learning with Selective Modality Communication [11.254610576923204]
We propose Federated Multimodal Fusion learning with Selective modality communication (FedMFS)
Key idea is the introduction of a modality selection criterion for each device, which weighs (i) the impact of the modality, gauged by Shapley value analysis, against (ii) the modality model size as a gauge for communication overhead.
Experiments on the real-world ActionSense dataset demonstrate the ability of FedMFS to achieve comparable accuracy to several baselines while reducing the communication overhead by over 4x.
arXiv Detail & Related papers (2023-10-10T22:23:27Z) - Large AI Model Empowered Multimodal Semantic Communications [48.73159237649128]
We propose a Large AI Model-based Multimodal SC (LAMMSC) framework.
We first present the Conditional-based Multimodal Alignment (MMA) that enables the transformation between multimodal and unimodal data.
Then, a personalized LLM-based Knowledge Base (LKB) is proposed, which allows users to perform personalized semantic extraction or recovery.
Finally, we apply the Generative adversarial network-based channel Estimation (CGE) for estimating the wireless channel state information.
arXiv Detail & Related papers (2023-09-03T19:24:34Z) - Low-Latency Federated Learning over Wireless Channels with Differential
Privacy [142.5983499872664]
In federated learning (FL), model training is distributed over clients and local models are aggregated by a central server.
In this paper, we aim to minimize FL training delay over wireless channels, constrained by overall training performance as well as each client's differential privacy (DP) requirement.
arXiv Detail & Related papers (2021-06-20T13:51:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.