A Transfer Learning Framework for Multilayer Networks via Model Averaging
- URL: http://arxiv.org/abs/2506.12455v1
- Date: Sat, 14 Jun 2025 11:32:31 GMT
- Title: A Transfer Learning Framework for Multilayer Networks via Model Averaging
- Authors: Yongqin Qiu, Xinyu Zhang,
- Abstract summary: Link prediction in multilayer networks is a key challenge in applications such as recommendation systems and protein-protein interaction prediction.<n>We propose a novel transfer learning framework for multilayer networks using a bi-level model averaging method.
- Score: 8.27209166988677
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Link prediction in multilayer networks is a key challenge in applications such as recommendation systems and protein-protein interaction prediction. While many techniques have been developed, most rely on assumptions about shared structures and require access to raw auxiliary data, limiting their practicality. To address these issues, we propose a novel transfer learning framework for multilayer networks using a bi-level model averaging method. A $K$-fold cross-validation criterion based on edges is used to automatically weight inter-layer and intra-layer candidate models. This enables the transfer of information from auxiliary layers while mitigating model uncertainty, even without prior knowledge of shared structures. Theoretically, we prove the optimality and weight convergence of our method under mild conditions. Computationally, our framework is efficient and privacy-preserving, as it avoids raw data sharing and supports parallel processing across multiple servers. Simulations show our method outperforms others in predictive accuracy and robustness. We further demonstrate its practical value through two real-world recommendation system applications.
Related papers
- A Scalable Pretraining Framework for Link Prediction with Efficient Adaptation [16.82426251068573]
Link Prediction (LP) is a critical task in graph machine learning.<n>Existing methods face key challenges including limited supervision from sparse connectivity.<n>We explore pretraining as a solution to address these challenges.
arXiv Detail & Related papers (2025-08-06T17:10:31Z) - Token Communication-Driven Multimodal Large Models in Resource-Constrained Multiuser Networks [7.137830911253685]
multimodal large models pose challenges for deploying intelligent applications at the wireless edge.<n>These constraints manifest as limited bandwidth, computational capacity, and stringent latency requirements.<n>We propose a token communication paradigm that facilitates decentralized proliferations across user devices and edge infrastructure.
arXiv Detail & Related papers (2025-05-06T14:17:05Z) - Multi-QuAD: Multi-Level Quality-Adaptive Dynamic Network for Reliable Multimodal Classification [57.08108545219043]
Existing reliable multimodal classification methods fail to provide robust estimation of data quality.<n>New framework for reliable classification termed textitMulti-level Quality-Adaptive Dynamic multimodal network (Multi-QuAD) is proposed.<n>Experiments conducted on four datasets demonstrate that Multi-QuAD significantly outperforms state-of-the-art methods in classification performance and reliability.
arXiv Detail & Related papers (2024-12-19T03:26:51Z) - Universal Pooling Method of Multi-layer Features from Pretrained Models for Speaker Verification [7.005068872406135]
Recent advancements in automatic speaker verification (ASV) studies have been achieved by leveraging large-scale pretrained networks.
We present a novel approach for exploiting the multilayered nature of pretrained models for ASV.
We show how the proposed interlayer processing aids in maximizing the advantage of utilizing pretrained models.
arXiv Detail & Related papers (2024-09-12T05:55:32Z) - Slimmable Domain Adaptation [112.19652651687402]
We introduce a simple framework, Slimmable Domain Adaptation, to improve cross-domain generalization with a weight-sharing model bank.
Our framework surpasses other competing approaches by a very large margin on multiple benchmarks.
arXiv Detail & Related papers (2022-06-14T06:28:04Z) - Supernet Training for Federated Image Classification under System
Heterogeneity [15.2292571922932]
In this work, we propose a novel framework to consider both scenarios, namely Federation of Supernet Training (FedSup)
It is inspired by how averaging parameters in the model aggregation stage of Federated Learning (FL) is similar to weight-sharing in supernet training.
Under our framework, we present an efficient algorithm (E-FedSup) by sending the sub-model to clients in the broadcast stage for reducing communication costs and training overhead.
arXiv Detail & Related papers (2022-06-03T02:21:01Z) - Bandit Sampling for Multiplex Networks [8.771092194928674]
We propose an algorithm for scalable learning on multiplex networks with a large number of layers.
Online learning algorithm learns how to sample relevant neighboring layers so that only the layers with relevant information are aggregated during training.
We present experimental results on both synthetic and real-world scenarios.
arXiv Detail & Related papers (2022-02-08T03:26:34Z) - Routing with Self-Attention for Multimodal Capsule Networks [108.85007719132618]
We present a new multimodal capsule network that allows us to leverage the strength of capsules in the context of a multimodal learning framework.
To adapt the capsules to large-scale input data, we propose a novel routing by self-attention mechanism that selects relevant capsules.
This allows not only for robust training with noisy video data, but also to scale up the size of the capsule network compared to traditional routing methods.
arXiv Detail & Related papers (2021-12-01T19:01:26Z) - PDFNet: Pointwise Dense Flow Network for Urban-Scene Segmentation [0.0]
We propose a novel lightweight architecture named point-wise dense flow network (PDFNet)
In PDFNet, we employ dense, residual, and multiple shortcut connections to allow a smooth gradient flow to all parts of the network.
Our method significantly outperforms baselines in capturing small classes and in few-data regimes.
arXiv Detail & Related papers (2021-09-21T10:39:46Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
We propose a self-supervised pre-training and fine-tuning framework, PF-HIN, to capture the features of a heterogeneous information network.
PF-HIN consistently and significantly outperforms state-of-the-art alternatives on each of these tasks, on four datasets.
arXiv Detail & Related papers (2020-07-07T03:36:28Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.