Pose Estimation for Intra-cardiac Echocardiography Catheter via AI-Based Anatomical Understanding
- URL: http://arxiv.org/abs/2505.07851v1
- Date: Wed, 07 May 2025 21:09:42 GMT
- Title: Pose Estimation for Intra-cardiac Echocardiography Catheter via AI-Based Anatomical Understanding
- Authors: Jaeyoung Huh, Ankur Kapoor, Young-Ho Kim,
- Abstract summary: Intra-cardiac Echocardiography (ICE) plays a crucial role in Electrophysiology (EP) and Structural Heart Disease (SHD) interventions.<n>Existing navigation methods rely on electromagnetic (EM) tracking, which is susceptible to interference and position drift.<n>We propose a novel anatomy-aware pose estimation system that determines the ICE catheter position and orientation solely from ICE images.
- Score: 7.208458407211938
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intra-cardiac Echocardiography (ICE) plays a crucial role in Electrophysiology (EP) and Structural Heart Disease (SHD) interventions by providing high-resolution, real-time imaging of cardiac structures. However, existing navigation methods rely on electromagnetic (EM) tracking, which is susceptible to interference and position drift, or require manual adjustments based on operator expertise. To overcome these limitations, we propose a novel anatomy-aware pose estimation system that determines the ICE catheter position and orientation solely from ICE images, eliminating the need for external tracking sensors. Our approach leverages a Vision Transformer (ViT)-based deep learning model, which captures spatial relationships between ICE images and anatomical structures. The model is trained on a clinically acquired dataset of 851 subjects, including ICE images paired with position and orientation labels normalized to the left atrium (LA) mesh. ICE images are patchified into 16x16 embeddings and processed through a transformer network, where a [CLS] token independently predicts position and orientation via separate linear layers. The model is optimized using a Mean Squared Error (MSE) loss function, balancing positional and orientational accuracy. Experimental results demonstrate an average positional error of 9.48 mm and orientation errors of (16.13 deg, 8.98 deg, 10.47 deg) across x, y, and z axes, confirming the model accuracy. Qualitative assessments further validate alignment between predicted and target views within 3D cardiac meshes. This AI-driven system enhances procedural efficiency, reduces operator workload, and enables real-time ICE catheter localization for tracking-free procedures. The proposed method can function independently or complement existing mapping systems like CARTO, offering a transformative approach to ICE-guided interventions.
Related papers
- Semantic Segmentation for Preoperative Planning in Transcatheter Aortic Valve Replacement [61.573750959726475]
We consider medical guidelines for preoperative planning of the transcatheter aortic valve replacement (TAVR) and identify tasks that may be supported via semantic segmentation models.<n>We first derive fine-grained TAVR-relevant pseudo-labels from coarse-grained anatomical information, in order to train segmentation models and quantify how well they are able to find these structures in the scans.
arXiv Detail & Related papers (2025-07-22T13:24:45Z) - U-R-VEDA: Integrating UNET, Residual Links, Edge and Dual Attention, and Vision Transformer for Accurate Semantic Segmentation of CMRs [0.0]
We propose a deep learning based enhanced UNet model, U-R-Veda, which integrates convolution transformations, vision transformer, residual links, channelattention, and spatial attention.<n>The model significantly improves the semantic segmentation of cardiac magnetic resonance (CMR) images.<n>Performance results show that U-R-Veda achieves an average accuracy of 95.2%, based on DSC.
arXiv Detail & Related papers (2025-06-25T04:10:09Z) - Guidance for Intra-cardiac Echocardiography Manipulation to Maintain Continuous Therapy Device Tip Visibility [7.208458407211938]
Intra-cardiac Echocardiography (ICE) plays a critical role in Electrophysiology (EP) and Structural Heart Disease (SHD) interventions.<n>Maintaining continuous visibility of the therapy device tip remains a challenge due to frequent adjustments required during manual ICE catheter manipulation.<n>We propose an AI-driven tracking model that estimates the device tip incident angle and passing point within the ICE imaging plane.
arXiv Detail & Related papers (2025-05-08T02:48:30Z) - AI-driven View Guidance System in Intra-cardiac Echocardiography Imaging [7.074445406436684]
Intra-cardiac echocardiography (ICE) is a crucial imaging modality used in electrophysiology (EP) and structural heart disease (SHD) interventions.<n>We propose an AIdriven view guidance system that operates in a continuous closed-loop with human-in-the-loop feedback.
arXiv Detail & Related papers (2024-09-25T13:08:10Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Next-generation Surgical Navigation: Marker-less Multi-view 6DoF Pose Estimation of Surgical Instruments [64.59698930334012]
We present a multi-camera capture setup consisting of static and head-mounted cameras.<n>Second, we publish a multi-view RGB-D video dataset of ex-vivo spine surgeries, captured in a surgical wet lab and a real operating theatre.<n>Third, we evaluate three state-of-the-art single-view and multi-view methods for the task of 6DoF pose estimation of surgical instruments.
arXiv Detail & Related papers (2023-05-05T13:42:19Z) - Live image-based neurosurgical guidance and roadmap generation using
unsupervised embedding [53.992124594124896]
We present a method for live image-only guidance leveraging a large data set of annotated neurosurgical videos.
A generated roadmap encodes the common anatomical paths taken in surgeries in the training set.
We trained and evaluated the proposed method with a data set of 166 transsphenoidal adenomectomy procedures.
arXiv Detail & Related papers (2023-03-31T12:52:24Z) - Parameter-Efficient Transformer with Hybrid Axial-Attention for Medical
Image Segmentation [10.441315305453504]
We propose a parameter-efficient transformer to explore intrinsic inductive bias via position information for medical image segmentation.
Motivated by this, we present a novel Hybrid Axial-Attention (HAA) that can be equipped with spatial pixel-wise information and relative position information as inductive bias.
arXiv Detail & Related papers (2022-11-17T13:54:55Z) - A Robust Backpropagation-Free Framework for Images [47.97322346441165]
We present an error kernel driven activation alignment algorithm for image data.
EKDAA accomplishes through the introduction of locally derived error transmission kernels and error maps.
Results are presented for an EKDAA trained CNN that employs a non-differentiable activation function.
arXiv Detail & Related papers (2022-06-03T21:14:10Z) - Towards Automatic Manipulation of Intra-cardiac Echocardiography
Catheter [10.926275815044182]
Intra-cardiac Echocardiography (ICE) is a powerful imaging modality for guiding electrophysiology and structural heart interventions.
We present a robotic manipulator for ICE catheters to assist physicians with imaging and serve as a platform for developing processes for procedural automation.
arXiv Detail & Related papers (2020-09-12T20:14:49Z) - Appearance Learning for Image-based Motion Estimation in Tomography [60.980769164955454]
In tomographic imaging, anatomical structures are reconstructed by applying a pseudo-inverse forward model to acquired signals.
Patient motion corrupts the geometry alignment in the reconstruction process resulting in motion artifacts.
We propose an appearance learning approach recognizing the structures of rigid motion independently from the scanned object.
arXiv Detail & Related papers (2020-06-18T09:49:11Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.