Guidance for Intra-cardiac Echocardiography Manipulation to Maintain Continuous Therapy Device Tip Visibility
- URL: http://arxiv.org/abs/2505.05518v1
- Date: Thu, 08 May 2025 02:48:30 GMT
- Title: Guidance for Intra-cardiac Echocardiography Manipulation to Maintain Continuous Therapy Device Tip Visibility
- Authors: Jaeyoung Huh, Ankur Kapoor, Young-Ho Kim,
- Abstract summary: Intra-cardiac Echocardiography (ICE) plays a critical role in Electrophysiology (EP) and Structural Heart Disease (SHD) interventions.<n>Maintaining continuous visibility of the therapy device tip remains a challenge due to frequent adjustments required during manual ICE catheter manipulation.<n>We propose an AI-driven tracking model that estimates the device tip incident angle and passing point within the ICE imaging plane.
- Score: 7.208458407211938
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intra-cardiac Echocardiography (ICE) plays a critical role in Electrophysiology (EP) and Structural Heart Disease (SHD) interventions by providing real-time visualization of intracardiac structures. However, maintaining continuous visibility of the therapy device tip remains a challenge due to frequent adjustments required during manual ICE catheter manipulation. To address this, we propose an AI-driven tracking model that estimates the device tip incident angle and passing point within the ICE imaging plane, ensuring continuous visibility and facilitating robotic ICE catheter control. A key innovation of our approach is the hybrid dataset generation strategy, which combines clinical ICE sequences with synthetic data augmentation to enhance model robustness. We collected ICE images in a water chamber setup, equipping both the ICE catheter and device tip with electromagnetic (EM) sensors to establish precise ground-truth locations. Synthetic sequences were created by overlaying catheter tips onto real ICE images, preserving motion continuity while simulating diverse anatomical scenarios. The final dataset consists of 5,698 ICE-tip image pairs, ensuring comprehensive training coverage. Our model architecture integrates a pretrained ultrasound (US) foundation model, trained on 37.4M echocardiography images, for feature extraction. A transformer-based network processes sequential ICE frames, leveraging historical passing points and incident angles to improve prediction accuracy. Experimental results demonstrate that our method achieves 3.32 degree entry angle error, 12.76 degree rotation angle error. This AI-driven framework lays the foundation for real-time robotic ICE catheter adjustments, minimizing operator workload while ensuring consistent therapy device visibility. Future work will focus on expanding clinical datasets to further enhance model generalization.
Related papers
- Semantic Segmentation for Preoperative Planning in Transcatheter Aortic Valve Replacement [61.573750959726475]
We consider medical guidelines for preoperative planning of the transcatheter aortic valve replacement (TAVR) and identify tasks that may be supported via semantic segmentation models.<n>We first derive fine-grained TAVR-relevant pseudo-labels from coarse-grained anatomical information, in order to train segmentation models and quantify how well they are able to find these structures in the scans.
arXiv Detail & Related papers (2025-07-22T13:24:45Z) - ClipGS: Clippable Gaussian Splatting for Interactive Cinematic Visualization of Volumetric Medical Data [51.095474325541794]
We introduce ClipGS, an innovative Gaussian splatting framework with the clipping plane supported, for interactive cinematic visualization of medical data.<n>We validate our method on five volumetric medical data, and reach an average 36.635 PSNR rendering quality with 156 FPS and 16.1 MB model size.
arXiv Detail & Related papers (2025-07-09T08:24:28Z) - Pose Estimation for Intra-cardiac Echocardiography Catheter via AI-Based Anatomical Understanding [7.208458407211938]
Intra-cardiac Echocardiography (ICE) plays a crucial role in Electrophysiology (EP) and Structural Heart Disease (SHD) interventions.<n>Existing navigation methods rely on electromagnetic (EM) tracking, which is susceptible to interference and position drift.<n>We propose a novel anatomy-aware pose estimation system that determines the ICE catheter position and orientation solely from ICE images.
arXiv Detail & Related papers (2025-05-07T21:09:42Z) - EchoWorld: Learning Motion-Aware World Models for Echocardiography Probe Guidance [79.66329903007869]
We present EchoWorld, a motion-aware world modeling framework for probe guidance.<n>It encodes anatomical knowledge and motion-induced visual dynamics.<n>It is trained on more than one million ultrasound images from over 200 routine scans.
arXiv Detail & Related papers (2025-04-17T16:19:05Z) - Federated Learning for Coronary Artery Plaque Detection in Atherosclerosis Using IVUS Imaging: A Multi-Hospital Collaboration [8.358846277772779]
Traditional interpretation of Intravascular Ultrasound (IVUS) images during Percutaneous Coronary Intervention ( PCI) is time-intensive and inconsistent.<n>A parallel 2D U-Net model with a multi-stage segmentation architecture has been developed to enable secure data analysis across institutions.<n>A Dice Similarity Coefficient (DSC) of 0.706, the model effectively identifies plaques and detects circular boundaries in real-time.
arXiv Detail & Related papers (2024-12-19T13:06:28Z) - AI-driven View Guidance System in Intra-cardiac Echocardiography Imaging [7.074445406436684]
Intra-cardiac echocardiography (ICE) is a crucial imaging modality used in electrophysiology (EP) and structural heart disease (SHD) interventions.<n>We propose an AIdriven view guidance system that operates in a continuous closed-loop with human-in-the-loop feedback.
arXiv Detail & Related papers (2024-09-25T13:08:10Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
We propose a framework for autonomous robotic navigation for subretinal injection.
Our method consists of an instrument pose estimation method, an online registration between the robotic and the i OCT system, and trajectory planning tailored for navigation to an injection target.
Our experiments on ex-vivo porcine eyes demonstrate the precision and repeatability of the method.
arXiv Detail & Related papers (2023-01-17T21:41:21Z) - Towards Autonomous Atlas-based Ultrasound Acquisitions in Presence of
Articulated Motion [48.52403516006036]
This paper proposes a vision-based approach allowing autonomous robotic US limb scanning.
To this end, an atlas MRI template of a human arm with annotated vascular structures is used to generate trajectories.
In all cases, the system can successfully acquire the planned vascular structure on volunteers' limbs.
arXiv Detail & Related papers (2022-08-10T15:39:20Z) - Towards Automatic Manipulation of Intra-cardiac Echocardiography
Catheter [10.926275815044182]
Intra-cardiac Echocardiography (ICE) is a powerful imaging modality for guiding electrophysiology and structural heart interventions.
We present a robotic manipulator for ICE catheters to assist physicians with imaging and serve as a platform for developing processes for procedural automation.
arXiv Detail & Related papers (2020-09-12T20:14:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.