Graph Laplacian Wavelet Transformer via Learnable Spectral Decomposition
- URL: http://arxiv.org/abs/2505.07862v1
- Date: Fri, 09 May 2025 00:13:23 GMT
- Title: Graph Laplacian Wavelet Transformer via Learnable Spectral Decomposition
- Authors: Andrew Kiruluta, Eric Lundy, Priscilla Burity,
- Abstract summary: Existing sequence to sequence models for structured language tasks rely heavily on the dot product self attention mechanism.<n>We introduce the Graph Wavelet Transformer (GWT), a novel architecture that replaces this bottleneck with a learnable, multi scale wavelet transform.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing sequence to sequence models for structured language tasks rely heavily on the dot product self attention mechanism, which incurs quadratic complexity in both computation and memory for input length N. We introduce the Graph Wavelet Transformer (GWT), a novel architecture that replaces this bottleneck with a learnable, multi scale wavelet transform defined over an explicit graph Laplacian derived from syntactic or semantic parses. Our analysis shows that multi scale spectral decomposition offers an interpretable, efficient, and expressive alternative to quadratic self attention for graph structured sequence modeling.
Related papers
- A Spectral Interpretation of Redundancy in a Graph Reservoir [51.40366905583043]
This work revisits the definition of the reservoir in the Multiresolution Reservoir Graph Neural Network (MRGNN)<n>It proposes a variant based on a Fairing algorithm originally introduced in the field of surface design in computer graphics.<n>The core contribution of the paper lies in the theoretical analysis of the algorithm from a random walks perspective.
arXiv Detail & Related papers (2025-07-17T10:02:57Z) - Graph-Dictionary Signal Model for Sparse Representations of Multivariate Data [49.77103348208835]
We define a novel Graph-Dictionary signal model, where a finite set of graphs characterizes relationships in data distribution through a weighted sum of their Laplacians.
We propose a framework to infer the graph dictionary representation from observed data, along with a bilinear generalization of the primal-dual splitting algorithm to solve the learning problem.
We exploit graph-dictionary representations in a motor imagery decoding task on brain activity data, where we classify imagined motion better than standard methods.
arXiv Detail & Related papers (2024-11-08T17:40:43Z) - Interpretable Lightweight Transformer via Unrolling of Learned Graph Smoothness Priors [16.04850782310842]
We build interpretable and lightweight transformer-like neural networks by unrolling iterative optimization algorithms.
A normalized signal-dependent graph learning module amounts to a variant of the basic self-attention mechanism in conventional transformers.
arXiv Detail & Related papers (2024-06-06T14:01:28Z) - Generating Graphs via Spectral Diffusion [48.70458395826864]
We present GGSD, a novel graph generative model based on 1) the spectral decomposition of the graph Laplacian matrix and 2) a diffusion process.<n>An extensive set of experiments on both synthetic and real-world graphs demonstrates the strengths of our model against state-of-the-art alternatives.
arXiv Detail & Related papers (2024-02-29T09:26:46Z) - Graph Transformers without Positional Encodings [0.7252027234425334]
We introduce Eigenformer, a Graph Transformer employing a novel spectrum-aware attention mechanism cognizant of the Laplacian spectrum of the graph.
We empirically show that it achieves performance competetive with SOTA Graph Transformers on a number of standard GNN benchmarks.
arXiv Detail & Related papers (2024-01-31T12:33:31Z) - Transformers as Graph-to-Graph Models [13.630495199720423]
We argue that Transformers are essentially graph-to-graph models, with sequences just being a special case.
Our Graph-to-Graph Transformer architecture makes this ability explicit, by inputting graph edges into the attention weight computations and predicting graph edges with attention-like functions.
arXiv Detail & Related papers (2023-10-27T07:21:37Z) - Discrete Graph Auto-Encoder [52.50288418639075]
We introduce a new framework named Discrete Graph Auto-Encoder (DGAE)
We first use a permutation-equivariant auto-encoder to convert graphs into sets of discrete latent node representations.
In the second step, we sort the sets of discrete latent representations and learn their distribution with a specifically designed auto-regressive model.
arXiv Detail & Related papers (2023-06-13T12:40:39Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Deformable Graph Transformer [31.254872949603982]
We propose Deformable Graph Transformer (DGT) that performs sparse attention with dynamically sampled key and value pairs.
Experiments demonstrate that our novel graph Transformer consistently outperforms existing Transformer-based models.
arXiv Detail & Related papers (2022-06-29T00:23:25Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
Spectral graph convolutional networks (SGCNs) have been attracting increasing attention in graph representation learning.
We propose a novel class of spectral graph convolutional networks that implement graph convolutions with adaptive graph wavelets.
arXiv Detail & Related papers (2021-08-03T17:57:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.