OMGM: Orchestrate Multiple Granularities and Modalities for Efficient Multimodal Retrieval
- URL: http://arxiv.org/abs/2505.07879v1
- Date: Sat, 10 May 2025 14:24:41 GMT
- Title: OMGM: Orchestrate Multiple Granularities and Modalities for Efficient Multimodal Retrieval
- Authors: Wei Yang, Jingjing Fu, Rui Wang, Jinyu Wang, Lei Song, Jiang Bian,
- Abstract summary: Vision-language retrieval-augmented generation (RAG) has become an effective approach for tackling Knowledge-Based Visual Question Answering (KB-VQA)<n>We propose a multimodal RAG system featuring a coarse-to-fine, multi-step retrieval that harmonizes multiple granularities and modalities to enhance efficacy.
- Score: 17.75545831558775
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-language retrieval-augmented generation (RAG) has become an effective approach for tackling Knowledge-Based Visual Question Answering (KB-VQA), which requires external knowledge beyond the visual content presented in images. The effectiveness of Vision-language RAG systems hinges on multimodal retrieval, which is inherently challenging due to the diverse modalities and knowledge granularities in both queries and knowledge bases. Existing methods have not fully tapped into the potential interplay between these elements. We propose a multimodal RAG system featuring a coarse-to-fine, multi-step retrieval that harmonizes multiple granularities and modalities to enhance efficacy. Our system begins with a broad initial search aligning knowledge granularity for cross-modal retrieval, followed by a multimodal fusion reranking to capture the nuanced multimodal information for top entity selection. A text reranker then filters out the most relevant fine-grained section for augmented generation. Extensive experiments on the InfoSeek and Encyclopedic-VQA benchmarks show our method achieves state-of-the-art retrieval performance and highly competitive answering results, underscoring its effectiveness in advancing KB-VQA systems.
Related papers
- mKG-RAG: Multimodal Knowledge Graph-Enhanced RAG for Visual Question Answering [29.5761347590239]
Retrieval-Augmented Generation (RAG) has been proposed to expand internal knowledge of Multimodal Large Language Models (MLLMs)<n>In this paper, we propose a novel multimodal knowledge-augmented generation framework (mKG-RAG) based on multimodal KGs for knowledge-intensive VQA tasks.
arXiv Detail & Related papers (2025-08-07T12:22:50Z) - Re-ranking Reasoning Context with Tree Search Makes Large Vision-Language Models Stronger [51.01841635655944]
Recent advancements in Large Vision Language Models (LVLMs) have significantly improved performance in Visual Question Answering (VQA) tasks.<n>Existing methods still face challenges, such as the scarcity of knowledge with reasoning examples and erratic responses from retrieved knowledge.<n>We propose a multimodal RAG framework, termed RCTS, which enhances LVLMs by constructing a Reasoning Context-enriched knowledge base and a Tree Search re-ranking method.
arXiv Detail & Related papers (2025-06-09T14:00:57Z) - A Multi-Granularity Retrieval Framework for Visually-Rich Documents [4.804551482123172]
We propose a unified multi-granularity multimodal retrieval framework tailored for two benchmark tasks: MMDocIR and M2KR.<n>Our approach integrates hierarchical encoding strategies, modality-aware retrieval mechanisms, and vision-language model (VLM)-based candidate filtering.<n>Our framework demonstrates robust performance without the need for task-specific fine-tuning.
arXiv Detail & Related papers (2025-05-01T02:40:30Z) - A Survey of Multimodal Retrieval-Augmented Generation [3.9616308910160445]
Multimodal Retrieval-Augmented Generation (MRAG) enhances large language models (LLMs) by integrating multimodal data (text, images, videos) into retrieval and generation processes.<n>Recent studies show MRAG outperforms traditional Retrieval-Augmented Generation (RAG) in scenarios requiring both visual and textual understanding.
arXiv Detail & Related papers (2025-03-26T02:43:09Z) - Open-Ended and Knowledge-Intensive Video Question Answering [20.256081440725353]
We investigate knowledge-intensive video question answering (KI-VideoQA) through the lens of multi-modal retrieval-augmented generation.<n>Our analysis examines various retrieval augmentation approaches using cutting-edge retrieval and vision language models.<n>We achieve a substantial 17.5% improvement in accuracy on multiple choice questions in the KnowIT VQA dataset.
arXiv Detail & Related papers (2025-02-17T12:40:35Z) - VisDoM: Multi-Document QA with Visually Rich Elements Using Multimodal Retrieval-Augmented Generation [100.06122876025063]
This paper introduces VisDoMBench, the first comprehensive benchmark designed to evaluate QA systems in multi-document settings.<n>We propose VisDoMRAG, a novel multimodal Retrieval Augmented Generation (RAG) approach that simultaneously utilizes visual and textual RAG.
arXiv Detail & Related papers (2024-12-14T06:24:55Z) - CUE-M: Contextual Understanding and Enhanced Search with Multimodal Large Language Model [9.224965304457708]
This paper introduces Contextual Understanding and Enhanced Search with MLLM (CUE-M), a novel multimodal search framework.<n>It incorporates image context enrichment, intent refinement, contextual query generation, external API integration, and relevance-based filtering.<n>Experiments on real-word datasets and public benchmarks on knowledge-based VQA and safety demonstrated that CUE-M outperforms baselines and establishes new state-of-the-art results.
arXiv Detail & Related papers (2024-11-19T07:16:48Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - MRAG-Bench: Vision-Centric Evaluation for Retrieval-Augmented Multimodal Models [115.16022378880376]
We introduce a multimodal retrieval-augmented generation benchmark, MRAG-Bench.<n>MRAG-Bench consists of 16,130 images and 1,353 human-annotated multiple-choice questions.<n>Results show that all large vision-language models (LVLMs) exhibit greater improvements when augmented with images compared to textual knowledge.
arXiv Detail & Related papers (2024-10-10T17:55:02Z) - An Interactive Multi-modal Query Answering System with Retrieval-Augmented Large Language Models [21.892975397847316]
We present an interactive Multi-modal Query Answering (MQA) system, empowered by our newly developed multi-modal retrieval framework and navigation graph index.
One notable aspect of MQA is its utilization of contrastive learning to assess the significance of different modalities.
The system achieves efficient retrieval through our advanced navigation graph index, refined using computational pruning techniques.
arXiv Detail & Related papers (2024-07-05T02:01:49Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - End-to-end Knowledge Retrieval with Multi-modal Queries [50.01264794081951]
ReMuQ requires a system to retrieve knowledge from a large corpus by integrating contents from both text and image queries.
We introduce a retriever model ReViz'' that can directly process input text and images to retrieve relevant knowledge in an end-to-end fashion.
We demonstrate superior performance in retrieval on two datasets under zero-shot settings.
arXiv Detail & Related papers (2023-06-01T08:04:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.