SIM-Shapley: A Stable and Computationally Efficient Approach to Shapley Value Approximation
- URL: http://arxiv.org/abs/2505.08198v1
- Date: Tue, 13 May 2025 03:23:10 GMT
- Title: SIM-Shapley: A Stable and Computationally Efficient Approach to Shapley Value Approximation
- Authors: Wangxuan Fan, Siqi Li, Doudou Zhou, Yohei Okada, Chuan Hong, Molei Liu, Nan Liu,
- Abstract summary: Shapley value (SV) methods provide a principled framework for feature attribution in complex models but incur high computational costs.<n>We propose Iterative Momentum for Shapley Value Approximation (SIM-Shapley), a stable and efficient approximation method inspired by optimization.<n>In our numerical experiments, SIM-Shapley reduces computation time by up to 85% relative to state-of-the-art baselines.
- Score: 8.323065815365602
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Explainable artificial intelligence (XAI) is essential for trustworthy machine learning (ML), particularly in high-stakes domains such as healthcare and finance. Shapley value (SV) methods provide a principled framework for feature attribution in complex models but incur high computational costs, limiting their scalability in high-dimensional settings. We propose Stochastic Iterative Momentum for Shapley Value Approximation (SIM-Shapley), a stable and efficient SV approximation method inspired by stochastic optimization. We analyze variance theoretically, prove linear $Q$-convergence, and demonstrate improved empirical stability and low bias in practice on real-world datasets. In our numerical experiments, SIM-Shapley reduces computation time by up to 85% relative to state-of-the-art baselines while maintaining comparable feature attribution quality. Beyond feature attribution, our stochastic mini-batch iterative framework extends naturally to a broader class of sample average approximation problems, offering a new avenue for improving computational efficiency with stability guarantees. Code is publicly available at https://github.com/nliulab/SIM-Shapley.
Related papers
- Generalized Linear Bandits: Almost Optimal Regret with One-Pass Update [60.414548453838506]
We study the generalized linear bandit (GLB) problem, a contextual multi-armed bandit framework that extends the classical linear model by incorporating a non-linear link function.<n>GLBs are widely applicable to real-world scenarios, but their non-linear nature introduces significant challenges in achieving both computational and statistical efficiency.<n>We propose a jointly efficient algorithm that attains a nearly optimal regret bound with $mathcalO(1)$ time and space complexities per round.
arXiv Detail & Related papers (2025-07-16T02:24:21Z) - Improving the Weighting Strategy in KernelSHAP [0.8057006406834466]
In Explainable AI (XAI) Shapley values are a popular framework for explaining predictions made by complex machine learning models.<n>We propose a novel modification of KernelSHAP which replaces the deterministic weights with ones to reduce the variance of the resulting Shapley value approximations.<n>Our methods can reduce the required number of contribution function evaluations by $5%$ to $50%$ while preserving the same accuracy of the approximated Shapley values.
arXiv Detail & Related papers (2024-10-07T10:02:31Z) - Provably Accurate Shapley Value Estimation via Leverage Score Sampling [12.201705893125775]
We introduce Leverage SHAP, a light-weight modification of Kernel SHAP that provides provably accurate Shapley value estimates with just $O(nlog n)$ model evaluations.<n>Our approach takes advantage of a connection between Shapley value estimation and active learning by employing leverage score sampling, a powerful regression tool.
arXiv Detail & Related papers (2024-10-02T18:15:48Z) - Energy-Based Model for Accurate Estimation of Shapley Values in Feature Attribution [7.378438977893025]
EmSHAP (Energy-based model for Shapley value estimation) is proposed to estimate the expectation of Shapley contribution function.<n>GRU (Gated Recurrent Unit)-coupled partition function estimation method is introduced.
arXiv Detail & Related papers (2024-04-01T12:19:33Z) - Variational Shapley Network: A Probabilistic Approach to Self-Explaining
Shapley values with Uncertainty Quantification [2.6699011287124366]
Shapley values have emerged as a foundational tool in machine learning (ML) for elucidating model decision-making processes.
We introduce a novel, self-explaining method that simplifies the computation of Shapley values significantly, requiring only a single forward pass.
arXiv Detail & Related papers (2024-02-06T18:09:05Z) - Online non-parametric likelihood-ratio estimation by Pearson-divergence
functional minimization [55.98760097296213]
We introduce a new framework for online non-parametric LRE (OLRE) for the setting where pairs of iid observations $(x_t sim p, x'_t sim q)$ are observed over time.
We provide theoretical guarantees for the performance of the OLRE method along with empirical validation in synthetic experiments.
arXiv Detail & Related papers (2023-11-03T13:20:11Z) - Fast Shapley Value Estimation: A Unified Approach [71.92014859992263]
We propose a straightforward and efficient Shapley estimator, SimSHAP, by eliminating redundant techniques.
In our analysis of existing approaches, we observe that estimators can be unified as a linear transformation of randomly summed values from feature subsets.
Our experiments validate the effectiveness of our SimSHAP, which significantly accelerates the computation of accurate Shapley values.
arXiv Detail & Related papers (2023-11-02T06:09:24Z) - Numerically Stable Sparse Gaussian Processes via Minimum Separation
using Cover Trees [57.67528738886731]
We study the numerical stability of scalable sparse approximations based on inducing points.
For low-dimensional tasks such as geospatial modeling, we propose an automated method for computing inducing points satisfying these conditions.
arXiv Detail & Related papers (2022-10-14T15:20:17Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
Distributionally robust supervised learning is emerging as a key paradigm for building reliable machine learning systems for real-world applications.
Existing algorithms for solving Wasserstein DRSL involve solving complex subproblems or fail to make use of gradients.
We revisit Wasserstein DRSL through the lens of min-max optimization and derive scalable and efficiently implementable extra-gradient algorithms.
arXiv Detail & Related papers (2021-04-27T16:56:09Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
We develop a framework that yields statistical accuracy based on interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (instability) when applied to an empirical object based on $n$ samples.
We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models.
arXiv Detail & Related papers (2020-05-22T22:30:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.