A Multi-scale Representation Learning Framework for Long-Term Time Series Forecasting
- URL: http://arxiv.org/abs/2505.08199v2
- Date: Fri, 16 May 2025 13:26:32 GMT
- Title: A Multi-scale Representation Learning Framework for Long-Term Time Series Forecasting
- Authors: Boshi Gao, Qingjian Ni, Fanbo Ju, Yu Chen, Ziqi Zhao,
- Abstract summary: Long-term time series forecasting (LTSF) offers broad utility in practical settings like energy consumption and weather prediction.<n>This work confronts key issues in LTSF, including the suboptimal use of multi-granularity information.<n>Our method adeptly disentangles complex temporal dynamics using clear, concurrent predictions across various scales.
- Score: 6.344911113059126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long-term time series forecasting (LTSF) offers broad utility in practical settings like energy consumption and weather prediction. Accurately predicting long-term changes, however, is demanding due to the intricate temporal patterns and inherent multi-scale variations within time series. This work confronts key issues in LTSF, including the suboptimal use of multi-granularity information, the neglect of channel-specific attributes, and the unique nature of trend and seasonal components, by introducing a proficient MLP-based forecasting framework. Our method adeptly disentangles complex temporal dynamics using clear, concurrent predictions across various scales. These multi-scale forecasts are then skillfully integrated through a system that dynamically assigns importance to information from different granularities, sensitive to individual channel characteristics. To manage the specific features of temporal patterns, a two-pronged structure is utilized to model trend and seasonal elements independently. Experimental results on eight LTSF benchmarks demonstrate that MDMixer improves average MAE performance by 4.64% compared to the recent state-of-the-art MLP-based method (TimeMixer), while achieving an effective balance between training efficiency and model interpretability.
Related papers
- TimeCF: A TimeMixer-Based Model with adaptive Convolution and Sharpness-Aware Minimization Frequency Domain Loss for long-term time seris forecasting [5.032613143415414]
We propose a deep learning model TimeCF for long-term time series forecasting based on the TimeMixer.<n>TimeCF decomposes the original time series into sequences of different scales.<n>Different scales are aggregated through a Feed-Forward Network.
arXiv Detail & Related papers (2025-05-23T06:39:20Z) - MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting [51.94256702463408]
Time series predictability is derived from periodic characteristics at different frequencies.<n>We propose a novel time series forecasting method based on multi-frequency reference series correlation analysis.<n> Experiments on major open and synthetic datasets show state-of-the-art performance.
arXiv Detail & Related papers (2025-03-11T11:40:14Z) - xLSTM-Mixer: Multivariate Time Series Forecasting by Mixing via Scalar Memories [20.773694998061707]
Time series data is prevalent across numerous fields, necessitating the development of robust and accurate forecasting models.
We introduce xLSTM-Mixer, a model designed to effectively integrate temporal sequences, joint time-variable information, and multiple perspectives for robust forecasting.
Our evaluations demonstrate xLSTM-Mixer's superior long-term forecasting performance compared to recent state-of-the-art methods.
arXiv Detail & Related papers (2024-10-22T11:59:36Z) - UmambaTSF: A U-shaped Multi-Scale Long-Term Time Series Forecasting Method Using Mamba [7.594115034632109]
We propose UmambaTSF, a novel long-term time series forecasting framework.
It integrates multi-scale feature extraction capabilities of U-shaped encoder-decoder multilayer perceptrons (MLP) with Mamba's long sequence representation.
UmambaTSF achieves state-of-the-art performance and excellent generality on widely used benchmark datasets.
arXiv Detail & Related papers (2024-10-15T04:56:43Z) - Adaptive Multi-Scale Decomposition Framework for Time Series Forecasting [26.141054975797868]
We propose a novel Adaptive Multi-Scale Decomposition (AMD) framework for time series forecasting.<n>Our framework decomposes time series into distinct temporal patterns at multiple scales, leveraging the Multi-Scale Decomposable Mixing (MDM) block.<n>Our approach effectively models both temporal and channel dependencies and utilizes autocorrelation to refine multi-scale data integration.
arXiv Detail & Related papers (2024-06-06T05:27:33Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
We propose a Multi-Grained Correlations-based Prediction Network.
It simultaneously considers correlations at three levels to enhance prediction performance.
It employs adversarial training with an attention mechanism-based predictor and conditional discriminator to optimize prediction results at coarse-grained level.
arXiv Detail & Related papers (2024-05-30T03:32:44Z) - TimeMixer: Decomposable Multiscale Mixing for Time Series Forecasting [19.88184356154215]
Time series forecasting is widely used in applications, such as traffic planning and weather forecasting.
TimeMixer is able to achieve consistent state-of-the-art performances in both long-term and short-term forecasting tasks.
arXiv Detail & Related papers (2024-05-23T14:27:07Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
We present PDETime, a novel LMTF model inspired by the principles of Neural PDE solvers.
Our experimentation across seven diversetemporal real-world LMTF datasets reveals that PDETime adapts effectively to the intrinsic nature of the data.
arXiv Detail & Related papers (2024-02-25T17:39:44Z) - Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective [63.60312929416228]
textbftextitAttraos incorporates chaos theory into long-term time series forecasting.
We show that Attraos outperforms various LTSF methods on mainstream datasets and chaotic datasets with only one-twelfth of the parameters compared to PatchTST.
arXiv Detail & Related papers (2024-02-18T05:35:01Z) - Parsimony or Capability? Decomposition Delivers Both in Long-term Time Series Forecasting [46.63798583414426]
Long-term time series forecasting (LTSF) represents a critical frontier in time series analysis.
Our study demonstrates, through both analytical and empirical evidence, that decomposition is key to containing excessive model inflation.
Remarkably, by tailoring decomposition to the intrinsic dynamics of time series data, our proposed model outperforms existing benchmarks.
arXiv Detail & Related papers (2024-01-22T13:15:40Z) - HiMTM: Hierarchical Multi-Scale Masked Time Series Modeling with Self-Distillation for Long-Term Forecasting [17.70984737213973]
HiMTM is a hierarchical multi-scale masked time series modeling with self-distillation for long-term forecasting.
HiMTM integrates four key components: (1) hierarchical multi-scale transformer (HMT) to capture temporal information at different scales; (2) decoupled encoder-decoder (DED) that directs the encoder towards feature extraction while the decoder focuses on pretext tasks.
Experiments on seven mainstream datasets show that HiMTM surpasses state-of-the-art self-supervised and end-to-end learning methods by a considerable margin of 3.16-68.54%.
arXiv Detail & Related papers (2024-01-10T09:00:03Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
We present a novel feature selection method embedded in Long Short-Term Memory networks.
Our approach optimize the weights and biases of the LSTM in a partitioned manner.
Experimental evaluations on air quality time series data from Italy and southeast Spain demonstrate that our method substantially improves the ability generalization of conventional LSTMs.
arXiv Detail & Related papers (2023-12-29T08:42:10Z) - The Capacity and Robustness Trade-off: Revisiting the Channel
Independent Strategy for Multivariate Time Series Forecasting [50.48888534815361]
We show that models trained with the Channel Independent (CI) strategy outperform those trained with the Channel Dependent (CD) strategy.
Our results conclude that the CD approach has higher capacity but often lacks robustness to accurately predict distributionally drifted time series.
We propose a modified CD method called Predict Residuals with Regularization (PRReg) that can surpass the CI strategy.
arXiv Detail & Related papers (2023-04-11T13:15:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.