Privacy-Preserving Analytics for Smart Meter (AMI) Data: A Hybrid Approach to Comply with CPUC Privacy Regulations
- URL: http://arxiv.org/abs/2505.08237v1
- Date: Tue, 13 May 2025 05:30:35 GMT
- Title: Privacy-Preserving Analytics for Smart Meter (AMI) Data: A Hybrid Approach to Comply with CPUC Privacy Regulations
- Authors: Benjamin Westrich,
- Abstract summary: In California, regulatory decisions mandate strict privacy protections for customer energy usage data.<n>We explore solutions drawn from data anonymization, privacy-preserving machine learning, synthetic data generation, and cryptographic techniques.<n>This allows advanced analytics, including machine learning models, statistical and econometric analysis on energy consumption data, to be performed without compromising individual privacy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advanced Metering Infrastructure (AMI) data from smart electric and gas meters enables valuable insights for utilities and consumers, but also raises significant privacy concerns. In California, regulatory decisions (CPUC D.11-07-056 and D.11-08-045) mandate strict privacy protections for customer energy usage data, guided by the Fair Information Practice Principles (FIPPs). We comprehensively explore solutions drawn from data anonymization, privacy-preserving machine learning (differential privacy and federated learning), synthetic data generation, and cryptographic techniques (secure multiparty computation, homomorphic encryption). This allows advanced analytics, including machine learning models, statistical and econometric analysis on energy consumption data, to be performed without compromising individual privacy. We evaluate each technique's theoretical foundations, effectiveness, and trade-offs in the context of utility data analytics, and we propose an integrated architecture that combines these methods to meet real-world needs. The proposed hybrid architecture is designed to ensure compliance with California's privacy rules and FIPPs while enabling useful analytics, from forecasting and personalized insights to academic research and econometrics, while strictly protecting individual privacy. Mathematical definitions and derivations are provided where appropriate to demonstrate privacy guarantees and utility implications rigorously. We include comparative evaluations of the techniques, an architecture diagram, and flowcharts to illustrate how they work together in practice. The result is a blueprint for utility data scientists and engineers to implement privacy-by-design in AMI data handling, supporting both data-driven innovation and strict regulatory compliance.
Related papers
- Rethinking Data Protection in the (Generative) Artificial Intelligence Era [115.71019708491386]
We propose a four-level taxonomy that captures the diverse protection needs arising in modern (generative) AI models and systems.<n>Our framework offers a structured understanding of the trade-offs between data utility and control, spanning the entire AI pipeline.
arXiv Detail & Related papers (2025-07-03T02:45:51Z) - Aim High, Stay Private: Differentially Private Synthetic Data Enables Public Release of Behavioral Health Information with High Utility [2.1715431485081593]
Differential Privacy (DP) provides formal guarantees against re-identification risks.<n>We generate DP synthetic data for Phase 1 of the Lived Experiences Measured Using Rings Study (LEMURS)<n>We evaluate the utility of the synthetic data using a framework informed by actual uses of the LEMURS dataset.
arXiv Detail & Related papers (2025-06-30T15:58:34Z) - Optimizing the Privacy-Utility Balance using Synthetic Data and Configurable Perturbation Pipelines [0.0]
This paper explores the strategic use of modern synthetic data generation and advanced data perturbation techniques to enhance security, maintain analytical utility, and improve operational efficiency when managing large datasets.<n>The goal is to create realistic, privacy-preserving datasets that retain high utility for complex machine learning tasks and analytics, a critical need in the data-sensitive industries like BFSI, Healthcare, Retail, and Telecommunications.
arXiv Detail & Related papers (2025-04-24T15:52:53Z) - SafeSynthDP: Leveraging Large Language Models for Privacy-Preserving Synthetic Data Generation Using Differential Privacy [0.0]
We investigate capability of Large Language Models (Ms) to generate synthetic datasets with Differential Privacy (DP) mechanisms.<n>Our approach incorporates DP-based noise injection methods, including Laplace and Gaussian distributions, into the data generation process.<n>We then evaluate the utility of these DP-enhanced synthetic datasets by comparing the performance of ML models trained on them against models trained on the original data.
arXiv Detail & Related papers (2024-12-30T01:10:10Z) - DP-CDA: An Algorithm for Enhanced Privacy Preservation in Dataset Synthesis Through Randomized Mixing [0.8739101659113155]
We introduce an effective data publishing algorithm emphDP-CDA.<n>Our proposed algorithm generates synthetic datasets by randomly mixing data in a class-specific manner, and inducing carefully-tuned randomness to ensure privacy guarantees.<n>Our results indicate that synthetic datasets produced using the DP-CDA can achieve superior utility compared to those generated by traditional data publishing algorithms, even when subject to the same privacy requirements.
arXiv Detail & Related papers (2024-11-25T06:14:06Z) - Collection, usage and privacy of mobility data in the enterprise and public administrations [55.2480439325792]
Security measures such as anonymization are needed to protect individuals' privacy.
Within our study, we conducted expert interviews to gain insights into practices in the field.
We survey privacy-enhancing methods in use, which generally do not comply with state-of-the-art standards of differential privacy.
arXiv Detail & Related papers (2024-07-04T08:29:27Z) - Synergizing Privacy and Utility in Data Analytics Through Advanced Information Theorization [2.28438857884398]
We introduce three sophisticated algorithms: a Noise-Infusion Technique tailored for high-dimensional image data, a Variational Autoencoder (VAE) for robust feature extraction and an Expectation Maximization (EM) approach optimized for structured data privacy.
Our methods significantly reduce mutual information between sensitive attributes and transformed data, thereby enhancing privacy.
The research contributes to the field by providing a flexible and effective strategy for deploying privacy-preserving algorithms across various data types.
arXiv Detail & Related papers (2024-04-24T22:58:42Z) - Libertas: Privacy-Preserving Collective Computation for Decentralised Personal Data Stores [18.91869691495181]
We introduce a modular architecture, Libertas, to integrate MPC with PDS like Solid.<n>We introduce a paradigm shift from an omniscient' view to individual-based, user-centric view of trust and security.
arXiv Detail & Related papers (2023-09-28T12:07:40Z) - Privacy-Preserving Graph Machine Learning from Data to Computation: A
Survey [67.7834898542701]
We focus on reviewing privacy-preserving techniques of graph machine learning.
We first review methods for generating privacy-preserving graph data.
Then we describe methods for transmitting privacy-preserved information.
arXiv Detail & Related papers (2023-07-10T04:30:23Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
We propose a general learning framework for the protection mechanisms that protects privacy via distorting model parameters.
It can achieve personalized utility-privacy trade-off for each model parameter, on each client, at each communication round in federated learning.
arXiv Detail & Related papers (2023-05-24T13:44:02Z) - Auditing and Generating Synthetic Data with Controllable Trust Trade-offs [54.262044436203965]
We introduce a holistic auditing framework that comprehensively evaluates synthetic datasets and AI models.
It focuses on preventing bias and discrimination, ensures fidelity to the source data, assesses utility, robustness, and privacy preservation.
We demonstrate the framework's effectiveness by auditing various generative models across diverse use cases.
arXiv Detail & Related papers (2023-04-21T09:03:18Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
Federated Learning (FL) allows the data owner to maintain data governance and perform model training locally without having to share their data.
FL and related techniques are often described as privacy-preserving.
We explain why this term is not appropriate and outline the risks associated with over-reliance on protocols that were not designed with formal definitions of privacy in mind.
arXiv Detail & Related papers (2021-12-21T08:44:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.