Ultra Lowrate Image Compression with Semantic Residual Coding and Compression-aware Diffusion
- URL: http://arxiv.org/abs/2505.08281v1
- Date: Tue, 13 May 2025 06:51:23 GMT
- Title: Ultra Lowrate Image Compression with Semantic Residual Coding and Compression-aware Diffusion
- Authors: Anle Ke, Xu Zhang, Tong Chen, Ming Lu, Chao Zhou, Jiawen Gu, Zhan Ma,
- Abstract summary: ResULIC is a residual-guided ultra lowrate image compression system.<n>It incorporates residual signals into both semantic retrieval and the diffusion-based generation process.<n>It achieves superior objective and subjective performance compared to state-of-the-art diffusion-based methods.
- Score: 28.61304513668606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing multimodal large model-based image compression frameworks often rely on a fragmented integration of semantic retrieval, latent compression, and generative models, resulting in suboptimal performance in both reconstruction fidelity and coding efficiency. To address these challenges, we propose a residual-guided ultra lowrate image compression named ResULIC, which incorporates residual signals into both semantic retrieval and the diffusion-based generation process. Specifically, we introduce Semantic Residual Coding (SRC) to capture the semantic disparity between the original image and its compressed latent representation. A perceptual fidelity optimizer is further applied for superior reconstruction quality. Additionally, we present the Compression-aware Diffusion Model (CDM), which establishes an optimal alignment between bitrates and diffusion time steps, improving compression-reconstruction synergy. Extensive experiments demonstrate the effectiveness of ResULIC, achieving superior objective and subjective performance compared to state-of-the-art diffusion-based methods with - 80.7%, -66.3% BD-rate saving in terms of LPIPS and FID. Project page is available at https: //njuvision.github.io/ResULIC/.
Related papers
- Generative Image Compression by Estimating Gradients of the Rate-variable Feature Distribution [37.60572296105984]
We propose a novel diffusion-based generative modeling framework tailored for generative image compression.<n>A reverse neural network is trained to reconstruct images by reversing the compression process directly.<n>This approach achieves smooth rate adjustment and photo-realistic reconstructions with only a minimal number of sampling steps.
arXiv Detail & Related papers (2025-05-27T10:18:24Z) - Higher fidelity perceptual image and video compression with a latent conditioned residual denoising diffusion model [55.2480439325792]
We propose a hybrid compression scheme optimized for perceptual quality, extending the approach of the CDC model with a decoder network.<n>We achieve up to +2dB PSNR fidelity improvements while maintaining comparable LPIPS and FID perceptual scores when compared with CDC.
arXiv Detail & Related papers (2025-05-19T14:13:14Z) - Multi-Scale Invertible Neural Network for Wide-Range Variable-Rate Learned Image Compression [90.59962443790593]
In this paper, we present a variable-rate image compression model based on invertible transform to overcome limitations.<n> Specifically, we design a lightweight multi-scale invertible neural network, which maps the input image into multi-scale latent representations.<n> Experimental results demonstrate that the proposed method achieves state-of-the-art performance compared to existing variable-rate methods.
arXiv Detail & Related papers (2025-03-27T09:08:39Z) - MambaIC: State Space Models for High-Performance Learned Image Compression [53.991726013454695]
A high-performance image compression algorithm is crucial for real-time information transmission across numerous fields.<n>Inspired by the effectiveness of state space models (SSMs) in capturing long-range dependencies, we leverage SSMs to address computational inefficiency in existing methods.<n>We propose an enhanced image compression approach through refined context modeling, which we term MambaIC.
arXiv Detail & Related papers (2025-03-16T11:32:34Z) - Pathology Image Compression with Pre-trained Autoencoders [52.208181380986524]
Whole Slide Images in digital histopathology pose significant storage, transmission, and computational efficiency challenges.<n>Standard compression methods, such as JPEG, reduce file sizes but fail to preserve fine-grained phenotypic details critical for downstream tasks.<n>In this work, we repurpose autoencoders (AEs) designed for Latent Diffusion Models as an efficient learned compression framework for pathology images.
arXiv Detail & Related papers (2025-03-14T17:01:17Z) - Hierarchical Semantic Compression for Consistent Image Semantic Restoration [62.97519327310638]
We propose a novel hierarchical semantic compression (HSC) framework that purely operates within intrinsic semantic spaces from generative models.<n> Experimental results demonstrate that the proposed HSC framework achieves the state-of-the-art performance on subjective quality and consistency for human vision.
arXiv Detail & Related papers (2025-02-24T03:20:44Z) - Improving Multi-generation Robustness of Learned Image Compression [16.86614420872084]
We show that LIC can achieve comparable performance to the first compression of BPG even after 50 times reencoding without any change of the network structure.
arXiv Detail & Related papers (2022-10-31T03:26:11Z) - Lossy Image Compression with Conditional Diffusion Models [25.158390422252097]
This paper outlines an end-to-end optimized lossy image compression framework using diffusion generative models.
In contrast to VAE-based neural compression, where the (mean) decoder is a deterministic neural network, our decoder is a conditional diffusion model.
Our approach yields stronger reported FID scores than the GAN-based model, while also yielding competitive performance with VAE-based models in several distortion metrics.
arXiv Detail & Related papers (2022-09-14T21:53:27Z) - Learned Image Compression with Generalized Octave Convolution and
Cross-Resolution Parameter Estimation [5.238765582868391]
We propose a learned multi-resolution image compression framework, which exploits octave convolutions to factorize the latent representations into the high-resolution (HR) and low-resolution (LR) parts.
Experimental results show that our method separately reduces the decoding time by approximately 73.35 % and 93.44 % compared with that of state-of-the-art learned image compression methods.
arXiv Detail & Related papers (2022-09-07T08:21:52Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - Generalized Octave Convolutions for Learned Multi-Frequency Image
Compression [20.504561050200365]
We propose the first learned multi-frequency image compression and entropy coding approach.
It is based on the recently developed octave convolutions to factorize the latents into high and low frequency (resolution) components.
We show that the proposed generalized octave convolution can improve the performance of other auto-encoder-based computer vision tasks.
arXiv Detail & Related papers (2020-02-24T01:35:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.