Learning Like Humans: Advancing LLM Reasoning Capabilities via Adaptive Difficulty Curriculum Learning and Expert-Guided Self-Reformulation
- URL: http://arxiv.org/abs/2505.08364v1
- Date: Tue, 13 May 2025 09:10:48 GMT
- Title: Learning Like Humans: Advancing LLM Reasoning Capabilities via Adaptive Difficulty Curriculum Learning and Expert-Guided Self-Reformulation
- Authors: Enci Zhang, Xingang Yan, Wei Lin, Tianxiang Zhang, Qianchun Lu,
- Abstract summary: We propose two novel strategies to enhance the capability of large language models to solve complex problems.<n>First, Adaptive Difficulty Curriculum Learning (ADCL) is a novel curriculum learning strategy that tackles the Difficulty Shift phenomenon.<n>Second, Expert-Guided Self-Reformulation (EGSR) is a novel reinforcement learning strategy that bridges the gap between imitation learning and pure exploration.
- Score: 5.793561443238794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite impressive progress in areas like mathematical reasoning, large language models still face significant challenges in consistently solving complex problems. Drawing inspiration from key human learning strategies, we propose two novel strategies to enhance the capability of large language models to solve these complex problems. First, Adaptive Difficulty Curriculum Learning (ADCL) is a novel curriculum learning strategy that tackles the Difficulty Shift phenomenon (i.e., a model's perception of problem difficulty dynamically changes during training) by periodically re-estimating difficulty within upcoming data batches to maintain alignment with the model's evolving capabilities. Second, Expert-Guided Self-Reformulation (EGSR) is a novel reinforcement learning strategy that bridges the gap between imitation learning and pure exploration by guiding models to reformulate expert solutions within their own conceptual framework, rather than relying on direct imitation, fostering deeper understanding and knowledge assimilation. Extensive experiments on challenging mathematical reasoning benchmarks, using Qwen2.5-7B as the base model, demonstrate that these human-inspired strategies synergistically and significantly enhance performance. Notably, their combined application improves performance over the standard Zero-RL baseline by 10% on the AIME24 benchmark and 16.6% on AIME25.
Related papers
- VL-Cogito: Progressive Curriculum Reinforcement Learning for Advanced Multimodal Reasoning [69.44871115752055]
We propose an advanced multimodal reasoning model trained via a novel Progressive Curriculum Reinforcement Learning (PCuRL) framework.<n>PCuRL systematically guides the model through tasks of gradually increasing difficulty, substantially improving its reasoning abilities across diverse multimodal contexts.<n>The framework introduces two key innovations: (1) an online difficulty soft weighting mechanism, dynamically adjusting training difficulty across successive RL training stages; and (2) a dynamic length reward mechanism, which encourages the model to adaptively regulate its reasoning path length according to task complexity.
arXiv Detail & Related papers (2025-07-30T12:23:21Z) - GHPO: Adaptive Guidance for Stable and Efficient LLM Reinforcement Learning [15.43938821214447]
Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a powerful paradigm for facilitating the self-improvement of large language models (LLMs)<n>This paper introduces Guided Hybrid Policy Optimization (GHPO), a novel difficulty-aware reinforcement learning framework.<n>GHPO dynamically calibrates task difficulty by employing adaptive prompt refinement to provide targeted guidance.
arXiv Detail & Related papers (2025-07-14T08:10:00Z) - Your Pretrained Model Tells the Difficulty Itself: A Self-Adaptive Curriculum Learning Paradigm for Natural Language Understanding [53.63482987410292]
We present a self-adaptive curriculum learning paradigm that prioritizes fine-tuning examples based on difficulty scores predicted by pre-trained language models.<n>We evaluate our method on four natural language understanding (NLU) datasets covering both binary and multi-class classification tasks.
arXiv Detail & Related papers (2025-07-13T19:36:17Z) - Progressive Mastery: Customized Curriculum Learning with Guided Prompting for Mathematical Reasoning [43.12759195699103]
Large Language Models (LLMs) have achieved remarkable performance across various reasoning tasks, yet post-training is constrained by inefficient sample utilization and inflexible difficulty samples processing.<n>We propose Customized Curriculum Learning (CCL), a novel framework with two key innovations.<n>First, we introduce model-adaptive difficulty definition that customizes curriculum datasets based on each model's individual capabilities rather than using predefined difficulty metrics.<n>Second, we develop "Guided Prompting," which dynamically reduces sample difficulty through strategic hints, enabling effective utilization of challenging samples that would otherwise degrade performance.
arXiv Detail & Related papers (2025-06-04T15:31:46Z) - PATS: Process-Level Adaptive Thinking Mode Switching [53.53401063490537]
Current large-language models (LLMs) typically adopt a fixed reasoning strategy, either simple or complex, for all questions, regardless of their difficulty.<n>This neglect of variation in task and reasoning process complexity leads to an imbalance between performance and efficiency.<n>Existing methods attempt to implement training-free fast-slow thinking system switching to handle problems of varying difficulty, but are limited by coarse-grained solution-level strategy adjustments.<n>We propose a novel reasoning paradigm: Process-Level Adaptive Thinking Mode Switching (PATS), which enables LLMs to dynamically adjust their reasoning strategy based on the difficulty of each step, optimizing the balance between
arXiv Detail & Related papers (2025-05-25T17:58:50Z) - Incentivizing Dual Process Thinking for Efficient Large Language Model Reasoning [75.04643265875072]
Large reasoning models (LRMs) have demonstrated strong performance on complex reasoning tasks, but often suffer from overthinking.<n>Inspired by the dual process theory in cognitive science, we propose Adaptive Cognition Policy Optimization.<n>ACPO enables LRMs to achieve efficient reasoning through adaptive cognitive allocation and dynamic system switch.
arXiv Detail & Related papers (2025-05-22T07:15:08Z) - DSMentor: Enhancing Data Science Agents with Curriculum Learning and Online Knowledge Accumulation [59.79833777420334]
Large language model (LLM) agents have shown promising performance in generating code for solving complex data science problems.<n>We develop a novel inference-time optimization framework, referred to as DSMentor, to enhance LLM agent performance.<n>Our work underscores the importance of developing effective strategies for accumulating and utilizing knowledge during inference.
arXiv Detail & Related papers (2025-05-20T10:16:21Z) - GRPO-LEAD: A Difficulty-Aware Reinforcement Learning Approach for Concise Mathematical Reasoning in Language Models [0.17265013728931003]
GRPO-LEAD is a suite of novel enhancements tailored for mathematical reasoning.<n>It introduces (1) a length-dependent accuracy reward to encourage concise and precise solutions, (2) an explicit penalty mechanism for incorrect answers to sharpen decision boundaries, and (3) a difficulty-aware advantage reweighting strategy that amplifies learning signals for challenging problems.
arXiv Detail & Related papers (2025-04-13T19:07:45Z) - LLM-driven Effective Knowledge Tracing by Integrating Dual-channel Difficulty [9.683271515093994]
We propose a novel Dual-channel Difficulty-aware Knowledge Tracing (DDKT) framework.<n>It incorporates difficulty bias-aware algorithms and student mastery algorithms for precise difficulty measurement.<n>Our framework introduces three key innovations: (1) Difficulty Balance Perception Sequence (DBPS) - students' subjective perceptions combined with objective difficulty, measuring gaps between LLM-assessed difficulty, mathematical-statistical difficulty, and students' subjective perceived difficulty through attention mechanisms; (2) Difficulty Mastery Ratio (DMR) - precise modeling of student mastery levels through different difficulty zones; and (3) Knowledge State Update Mechanism - implementing personalized knowledge acquisition through gated
arXiv Detail & Related papers (2025-02-27T09:36:27Z) - Revisiting Robust RAG: Do We Still Need Complex Robust Training in the Era of Powerful LLMs? [69.38149239733994]
We investigate whether complex robust training strategies remain necessary as model capacity grows.<n>We find that as models become more powerful, the performance gains brought by complex robust training methods drop off dramatically.<n>Our findings suggest that RAG systems can benefit from simpler architectures and training strategies as models become more powerful.
arXiv Detail & Related papers (2025-02-17T03:34:31Z) - BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts [59.83547898874152]
We introduce BloomWise, a new prompting technique, inspired by Bloom's taxonomy, to improve the performance of Large Language Models (LLMs)
The decision regarding the need to employ more sophisticated cognitive skills is based on self-evaluation performed by the LLM.
In extensive experiments across 4 popular math reasoning datasets, we have demonstrated the effectiveness of our proposed approach.
arXiv Detail & Related papers (2024-10-05T09:27:52Z) - A Psychology-based Unified Dynamic Framework for Curriculum Learning [5.410910735259908]
This paper presents a Psychology-based Unified Dynamic Framework for Curriculum Learning (PUDF)
We quantify the difficulty of training data by applying Item Response Theory (IRT) to responses from Artificial Crowds (AC)
We propose a Dynamic Data Selection via Model Ability Estimation (DDS-MAE) strategy to schedule the appropriate amount of data during model training.
arXiv Detail & Related papers (2024-08-09T20:30:37Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.<n>We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.<n>Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - MR-GSM8K: A Meta-Reasoning Benchmark for Large Language Model Evaluation [60.65820977963331]
We introduce a novel evaluation paradigm for Large Language Models (LLMs)
This paradigm shifts the emphasis from result-oriented assessments, which often neglect the reasoning process, to a more comprehensive evaluation.
By applying this paradigm in the GSM8K dataset, we have developed the MR-GSM8K benchmark.
arXiv Detail & Related papers (2023-12-28T15:49:43Z) - Difficulty-Focused Contrastive Learning for Knowledge Tracing with a
Large Language Model-Based Difficulty Prediction [2.8946115982002443]
This paper presents novel techniques for enhancing the performance of knowledge tracing (KT) models by focusing on the crucial factor of question and concept difficulty level.
We propose a difficulty-centered contrastive learning method for KT models and a Large Language Model (LLM)-based framework for difficulty prediction.
arXiv Detail & Related papers (2023-12-19T06:26:25Z) - Importance Weighted Policy Learning and Adaptation [89.46467771037054]
We study a complementary approach which is conceptually simple, general, modular and built on top of recent improvements in off-policy learning.
The framework is inspired by ideas from the probabilistic inference literature and combines robust off-policy learning with a behavior prior.
Our approach achieves competitive adaptation performance on hold-out tasks compared to meta reinforcement learning baselines and can scale to complex sparse-reward scenarios.
arXiv Detail & Related papers (2020-09-10T14:16:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.