Continuous World Coverage Path Planning for Fixed-Wing UAVs using Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2505.08382v1
- Date: Tue, 13 May 2025 09:29:16 GMT
- Title: Continuous World Coverage Path Planning for Fixed-Wing UAVs using Deep Reinforcement Learning
- Authors: Mirco Theile, Andres R. Zapata Rodriguez, Marco Caccamo, Alberto L. Sangiovanni-Vincentelli,
- Abstract summary: Unmanned Aerial Vehicle (UAV) Coverage Path Planning ( CPP) is critical for applications such as precision agriculture and search and rescue.<n>We formulate the UAV CPP problem in a continuous environment, minimizing power consumption while ensuring complete coverage.<n>Our approach models the environment with variable-size axis-aligned rectangles and UAV motion with curvature-constrained B'ezier curves.
- Score: 4.851013539976943
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unmanned Aerial Vehicle (UAV) Coverage Path Planning (CPP) is critical for applications such as precision agriculture and search and rescue. While traditional methods rely on discrete grid-based representations, real-world UAV operations require power-efficient continuous motion planning. We formulate the UAV CPP problem in a continuous environment, minimizing power consumption while ensuring complete coverage. Our approach models the environment with variable-size axis-aligned rectangles and UAV motion with curvature-constrained B\'ezier curves. We train a reinforcement learning agent using an action-mapping-based Soft Actor-Critic (AM-SAC) algorithm employing a self-adaptive curriculum. Experiments on both procedurally generated and hand-crafted scenarios demonstrate the effectiveness of our method in learning energy-efficient coverage strategies.
Related papers
- LLM Meets the Sky: Heuristic Multi-Agent Reinforcement Learning for Secure Heterogeneous UAV Networks [57.27815890269697]
This work focuses on maximizing the secrecy rate in heterogeneous UAV networks (HetUAVNs) under energy constraints.<n>We introduce a Large Language Model (LLM)-guided multi-agent learning approach.<n>Results show that our method outperforms existing baselines in secrecy and energy efficiency.
arXiv Detail & Related papers (2025-07-23T04:22:57Z) - Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
The low-altitude economy (LAE), driven by unmanned aerial vehicles (UAVs) and other aircraft, has revolutionized fields such as transportation, agriculture, and environmental monitoring.<n>In the upcoming six-generation (6G) era, UAV-assisted mobile edge computing (MEC) is particularly crucial in challenging environments such as mountainous or disaster-stricken areas.<n>The task offloading problem is one of the key issues in UAV-assisted MEC, primarily addressing the trade-off between minimizing the task delay and the energy consumption of the UAV.
arXiv Detail & Related papers (2025-01-11T02:32:42Z) - Meta Reinforcement Learning for Strategic IoT Deployments Coverage in
Disaster-Response UAV Swarms [5.57865728456594]
Unmanned Aerial Vehicles (UAVs) have grabbed the attention of researchers in academia and industry for their potential use in critical emergency applications.
These applications include providing wireless services to ground users and collecting data from areas affected by disasters.
UAVs' limited resources, energy budget, and strict mission completion time have posed challenges in adopting UAVs for these applications.
arXiv Detail & Related papers (2024-01-20T05:05:39Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
offline reinforcement learning (RL) paradigm provides recipe to convert static behavior datasets into policies that can perform better than the policy that collected the data.
In this paper, we propose an adaptive scheme for action quantization.
We show that several state-of-the-art offline RL methods such as IQL, CQL, and BRAC improve in performance on benchmarks when combined with our proposed discretization scheme.
arXiv Detail & Related papers (2023-10-18T06:07:10Z) - Joint Path planning and Power Allocation of a Cellular-Connected UAV
using Apprenticeship Learning via Deep Inverse Reinforcement Learning [7.760962597460447]
This paper investigates an interference-aware joint path planning and power allocation mechanism for a cellular-connected unmanned aerial vehicle (UAV) in a sparse suburban environment.
The UAV aims to maximize its uplink throughput and minimize the level of interference to the ground user equipment (UEs) connected to the neighbor cellular BSs.
An apprenticeship learning method is utilized via inverse reinforcement learning (IRL) based on both Q-learning and deep reinforcement learning (DRL)
arXiv Detail & Related papers (2023-06-15T20:50:05Z) - Obstacle Avoidance for UAS in Continuous Action Space Using Deep
Reinforcement Learning [9.891207216312937]
Obstacle avoidance for small unmanned aircraft is vital for the safety of future urban air mobility.
We propose a deep reinforcement learning algorithm based on Proximal Policy Optimization (PPO) to guide autonomous UAS to their destinations.
Results show that the proposed model can provide accurate and robust guidance and resolve conflict with a success rate of over 99%.
arXiv Detail & Related papers (2021-11-13T04:44:53Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
In this paper, we investigate an unmanned aerial vehicle (UAV)-assisted Internet-of-Things (IoT) system in a 3D environment.
We present a TD3-based trajectory design for completion time minimization (TD3-TDCTM) algorithm.
Our simulation results show the superiority of the proposed TD3-TDCTM algorithm over three conventional non-learning based baseline methods.
arXiv Detail & Related papers (2021-07-23T03:33:29Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z) - Motion Planning by Reinforcement Learning for an Unmanned Aerial Vehicle
in Virtual Open Space with Static Obstacles [3.5356468463540214]
We applied reinforcement learning to perform motion planning for an unmanned aerial vehicle (UAV) in an open space with static obstacles.
As the reinforcement learning progressed, the mean reward and goal rate of the model were increased.
arXiv Detail & Related papers (2020-09-24T16:42:56Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
Learning-based control algorithms require data collection with abundant supervision for training.
We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained optimal control with dynamics learning and feedback control.
arXiv Detail & Related papers (2020-05-09T05:57:43Z) - Using Deep Reinforcement Learning Methods for Autonomous Vessels in 2D
Environments [11.657524999491029]
In this work, we used deep reinforcement learning combining Q-learning with a neural representation to avoid instability.
Our methodology uses deep q-learning and combines it with a rolling wave planning approach on agile methodology.
Experimental results show that the proposed method enhanced the performance of VVN by 55.31 on average for long-distance missions.
arXiv Detail & Related papers (2020-03-23T12:58:58Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
We design a navigation policy for multiple unmanned aerial vehicles (UAVs) where mobile base stations (BSs) are deployed.
We incorporate different contextual information such as energy and age of information (AoI) constraints to ensure the data freshness at the ground BS.
By applying the proposed trained model, an effective real-time trajectory policy for the UAV-BSs captures the observable network states over time.
arXiv Detail & Related papers (2020-02-21T07:29:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.