Parameter Estimation using Reinforcement Learning Causal Curiosity: Limits and Challenges
- URL: http://arxiv.org/abs/2505.08453v1
- Date: Tue, 13 May 2025 11:30:51 GMT
- Title: Parameter Estimation using Reinforcement Learning Causal Curiosity: Limits and Challenges
- Authors: Miguel Arana-Catania, Weisi Guo,
- Abstract summary: Causal Curiosity aims to estimate as accurately and efficiently as possible, without directly measuring them.<n>We present for the first time a measurement accuracy analysis of the future potentials and current limitations of this technique.<n>As a result of our work, we promote proposals for an improved and efficient design of Causal Curiosity methods.
- Score: 6.872096639211664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal understanding is important in many disciplines of science and engineering, where we seek to understand how different factors in the system causally affect an experiment or situation and pave a pathway towards creating effective or optimising existing models. Examples of use cases are autonomous exploration and modelling of unknown environments or assessing key variables in optimising large complex systems. In this paper, we analyse a Reinforcement Learning approach called Causal Curiosity, which aims to estimate as accurately and efficiently as possible, without directly measuring them, the value of factors that causally determine the dynamics of a system. Whilst the idea presents a pathway forward, measurement accuracy is the foundation of methodology effectiveness. Focusing on the current causal curiosity's robotic manipulator, we present for the first time a measurement accuracy analysis of the future potentials and current limitations of this technique and an analysis of its sensitivity and confounding factor disentanglement capability - crucial for causal analysis. As a result of our work, we promote proposals for an improved and efficient design of Causal Curiosity methods to be applied to real-world complex scenarios.
Related papers
- Can Large Language Models Help Experimental Design for Causal Discovery? [94.66802142727883]
Large Language Model Guided Intervention Targeting (LeGIT) is a robust framework that effectively incorporates LLMs to augment existing numerical approaches for the intervention targeting in causal discovery.<n>LeGIT demonstrates significant improvements and robustness over existing methods and even surpasses humans.
arXiv Detail & Related papers (2025-03-03T03:43:05Z) - DAG-aware Transformer for Causal Effect Estimation [0.8192907805418583]
Causal inference is a critical task across fields such as healthcare, economics, and the social sciences.<n>In this paper, we present a novel transformer-based method for causal inference that overcomes these challenges.<n>The core innovation of our model lies in its integration of causal Directed Acyclic Graphs (DAGs) directly into the attention mechanism.
arXiv Detail & Related papers (2024-10-13T23:17:58Z) - Root Cause Analysis for Microservice System based on Causal Inference: How Far Are We? [11.627235799040388]
We conduct a comprehensive evaluation of causal inference-based root cause analysis methods for microservice systems.
No method stands out in all situations; each method tends to either fall short in effectiveness, efficiency, or shows sensitivity to specific parameters.
arXiv Detail & Related papers (2024-08-25T05:53:42Z) - Performative Prediction on Games and Mechanism Design [69.7933059664256]
We study a collective risk dilemma where agents decide whether to trust predictions based on past accuracy.<n>As predictions shape collective outcomes, social welfare arises naturally as a metric of concern.<n>We show how to achieve better trade-offs and use them for mechanism design.
arXiv Detail & Related papers (2024-08-09T16:03:44Z) - Active Learning for Derivative-Based Global Sensitivity Analysis with Gaussian Processes [70.66864668709677]
We consider the problem of active learning for global sensitivity analysis of expensive black-box functions.
Since function evaluations are expensive, we use active learning to prioritize experimental resources where they yield the most value.
We propose novel active learning acquisition functions that directly target key quantities of derivative-based global sensitivity measures.
arXiv Detail & Related papers (2024-07-13T01:41:12Z) - Detection and Evaluation of bias-inducing Features in Machine learning [14.045499740240823]
In the context of machine learning (ML), one can use cause-to-effect analysis to understand the reason for the biased behavior of the system.
We propose an approach for systematically identifying all bias-inducing features of a model to help support the decision-making of domain experts.
arXiv Detail & Related papers (2023-10-19T15:01:16Z) - Causal Deep Learning [77.49632479298745]
Causality has the potential to transform the way we solve real-world problems.
But causality often requires crucial assumptions which cannot be tested in practice.
We propose a new way of thinking about causality -- we call this causal deep learning.
arXiv Detail & Related papers (2023-03-03T19:19:18Z) - Trying to Outrun Causality with Machine Learning: Limitations of Model
Explainability Techniques for Identifying Predictive Variables [7.106986689736828]
We show that machine learning algorithms are not as flexible as they might seem, and are instead incredibly sensitive to the underling causal structure in the data.
We provide some alternative recommendations for researchers wanting to explore the data for important variables.
arXiv Detail & Related papers (2022-02-20T17:48:54Z) - Empirical Estimates on Hand Manipulation are Recoverable: A Step Towards
Individualized and Explainable Robotic Support in Everyday Activities [80.37857025201036]
Key challenge for robotic systems is to figure out the behavior of another agent.
Processing correct inferences is especially challenging when (confounding) factors are not controlled experimentally.
We propose equipping robots with the necessary tools to conduct observational studies on people.
arXiv Detail & Related papers (2022-01-27T22:15:56Z) - Uncertainty quantification and exploration-exploitation trade-off in
humans [0.0]
The main objective of this paper is to outline a theoretical framework to analyse how humans' decision-making strategies under uncertainty manage the trade-off between information gathering (exploration) and reward seeking (exploitation)
arXiv Detail & Related papers (2021-02-05T16:03:04Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [62.61153549123407]
We explore the use of historical expert decisions as a rich source of information that can be combined with observed outcomes to narrow the construct gap.
We propose an influence function-based methodology to estimate expert consistency indirectly when each case in the data is assessed by a single expert.
Our empirical evaluation, using simulations in a clinical setting and real-world data from the child welfare domain, indicates that the proposed approach successfully narrows the construct gap.
arXiv Detail & Related papers (2021-01-24T05:40:29Z) - Tracking Emotions: Intrinsic Motivation Grounded on Multi-Level
Prediction Error Dynamics [68.8204255655161]
We discuss how emotions arise when differences between expected and actual rates of progress towards a goal are experienced.
We present an intrinsic motivation architecture that generates behaviors towards self-generated and dynamic goals.
arXiv Detail & Related papers (2020-07-29T06:53:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.