A Deep Learning-Driven Inhalation Injury Grading Assistant Using Bronchoscopy Images
- URL: http://arxiv.org/abs/2505.08517v2
- Date: Thu, 15 May 2025 17:28:04 GMT
- Title: A Deep Learning-Driven Inhalation Injury Grading Assistant Using Bronchoscopy Images
- Authors: Yifan Li, Alan W Pang, Jo Woon Chong,
- Abstract summary: Inhalation injuries present a challenge in clinical diagnosis and grading due to Conventional grading methods being subjective.<n>This study introduces a novel deep learning-based diagnosis assistant tool for grading inhalation injuries using bronchoscopy images.
- Score: 2.7440389071148386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inhalation injuries present a challenge in clinical diagnosis and grading due to Conventional grading methods such as the Abbreviated Injury Score (AIS) being subjective and lacking robust correlation with clinical parameters like mechanical ventilation duration and patient mortality. This study introduces a novel deep learning-based diagnosis assistant tool for grading inhalation injuries using bronchoscopy images to overcome subjective variability and enhance consistency in severity assessment. Our approach leverages data augmentation techniques, including graphic transformations, Contrastive Unpaired Translation (CUT), and CycleGAN, to address the scarcity of medical imaging data. We evaluate the classification performance of two deep learning models, GoogLeNet and Vision Transformer (ViT), across a dataset significantly expanded through these augmentation methods. The results demonstrate GoogLeNet combined with CUT as the most effective configuration for grading inhalation injuries through bronchoscopy images and achieves a classification accuracy of 97.8%. The histograms and frequency analysis evaluations reveal variations caused by the augmentation CUT with distribution changes in the histogram and texture details of the frequency spectrum. PCA visualizations underscore the CUT substantially enhances class separability in the feature space. Moreover, Grad-CAM analyses provide insight into the decision-making process; mean intensity for CUT heatmaps is 119.6, which significantly exceeds 98.8 of the original datasets. Our proposed tool leverages mechanical ventilation periods as a novel grading standard, providing comprehensive diagnostic support.
Related papers
- Machine Learning-Based Quantification of Vesicoureteral Reflux with Enhancing Accuracy and Efficiency [0.0]
Vesicoureteral reflux (VUR) is traditionally assessed using subjective grading systems.<n>This study investigates the use of machine learning to improve diagnostic consistency by analyzing voiding cystourethrogram (VCUG) images.
arXiv Detail & Related papers (2025-06-13T07:09:12Z) - Federated Learning with LoRA Optimized DeiT and Multiscale Patch Embedding for Secure Eye Disease Recognition [2.1358421658740214]
This study introduces a data-efficient image transformer (DeIT)-based approach to advance AI-powered medical imaging and disease detection.<n>It achieves state-of-the-art performance, with the highest AUC, F1 score, precision, minimal loss, and Top-5 accuracy.<n>Grad-CAM++ visualizations improve interpretability by highlighting critical pathological regions, enhancing the model's clinical relevance.
arXiv Detail & Related papers (2025-05-11T13:51:56Z) - Enhanced Multi-Class Classification of Gastrointestinal Endoscopic Images with Interpretable Deep Learning Model [0.7349657385817541]
This research introduces a novel approach to enhance classification accuracy using 8,000 labeled endoscopic images from the Kvasir dataset.<n>The proposed architecture eliminates reliance on data augmentation while preserving moderate model complexity.<n>The model achieves a test accuracy of 94.25%, alongside precision and recall of 94.29% and 94.24% respectively.
arXiv Detail & Related papers (2025-03-02T08:07:50Z) - DiffuPT: Class Imbalance Mitigation for Glaucoma Detection via Diffusion Based Generation and Model Pretraining [1.8218878957822688]
glaucoma is a progressive optic neuropathy characterized by structural damage to the optic nerve head and functional changes in the visual field.<n>We use a generative-based framework to enhance glaucoma diagnosis, specifically addressing class imbalance through synthetic data generation.
arXiv Detail & Related papers (2024-12-04T17:39:44Z) - Local Lesion Generation is Effective for Capsule Endoscopy Image Data Augmentation in a Limited Data Setting [0.0]
We propose and evaluate two local lesion generation approaches to address the challenge of augmenting small medical image datasets.<n>The first approach employs the Poisson Image Editing algorithm, a classical image processing technique, to create realistic image composites.<n>The second approach introduces a novel generative method, leveraging a fine-tuned Image Inpainting GAN to synthesize realistic lesions.
arXiv Detail & Related papers (2024-11-05T13:44:25Z) - InfLocNet: Enhanced Lung Infection Localization and Disease Detection from Chest X-Ray Images Using Lightweight Deep Learning [0.5242869847419834]
This paper presents a novel, lightweight deep learning based segmentation-classification network.
It is designed to enhance the detection and localization of lung infections using chest X-ray images.
Our model achieves remarkable results with an Intersection over Union (IoU) of 93.59% and a Dice Similarity Coefficient (DSC) of 97.61% in lung area segmentation.
arXiv Detail & Related papers (2024-08-12T19:19:23Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - HGT: A Hierarchical GCN-Based Transformer for Multimodal Periprosthetic
Joint Infection Diagnosis Using CT Images and Text [0.0]
Prosthetic Joint Infection (PJI) is a prevalent and severe complication.
Currently, a unified diagnostic standard incorporating both computed tomography (CT) images and numerical text data for PJI remains unestablished.
This study introduces a diagnostic method, HGT, based on deep learning and multimodal techniques.
arXiv Detail & Related papers (2023-05-29T11:25:57Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Semantic Latent Space Regression of Diffusion Autoencoders for Vertebral
Fracture Grading [72.45699658852304]
This paper proposes a novel approach to train a generative Diffusion Autoencoder model as an unsupervised feature extractor.
We model fracture grading as a continuous regression, which is more reflective of the smooth progression of fractures.
Importantly, the generative nature of our method allows us to visualize different grades of a given vertebra, providing interpretability and insight into the features that contribute to automated grading.
arXiv Detail & Related papers (2023-03-21T17:16:01Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Vision Transformers for femur fracture classification [59.99241204074268]
The Vision Transformer (ViT) was able to correctly predict 83% of the test images.
Good results were obtained in sub-fractures with the largest and richest dataset ever.
arXiv Detail & Related papers (2021-08-07T10:12:42Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Implanting Synthetic Lesions for Improving Liver Lesion Segmentation in
CT Exams [0.0]
We present a method for implanting realistic lesions in CT slices to provide a rich and controllable set of training samples.
We conclude that increasing the variability of lesions synthetically in terms of size, density, shape, and position seems to improve the performance of segmentation models for liver lesion segmentation in CT slices.
arXiv Detail & Related papers (2020-08-11T13:23:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.