DiffuPT: Class Imbalance Mitigation for Glaucoma Detection via Diffusion Based Generation and Model Pretraining
- URL: http://arxiv.org/abs/2412.03629v1
- Date: Wed, 04 Dec 2024 17:39:44 GMT
- Title: DiffuPT: Class Imbalance Mitigation for Glaucoma Detection via Diffusion Based Generation and Model Pretraining
- Authors: Youssof Nawar, Nouran Soliman, Moustafa Wassel, Mohamed ElHabebe, Noha Adly, Marwan Torki, Ahmed Elmassry, Islam Ahmed,
- Abstract summary: glaucoma is a progressive optic neuropathy characterized by structural damage to the optic nerve head and functional changes in the visual field.
We use a generative-based framework to enhance glaucoma diagnosis, specifically addressing class imbalance through synthetic data generation.
- Score: 1.8218878957822688
- License:
- Abstract: Glaucoma is a progressive optic neuropathy characterized by structural damage to the optic nerve head and functional changes in the visual field. Detecting glaucoma early is crucial to preventing loss of eyesight. However, medical datasets often suffer from class imbalances, making detection more difficult for deep-learning algorithms. We use a generative-based framework to enhance glaucoma diagnosis, specifically addressing class imbalance through synthetic data generation. In addition, we collected the largest national dataset for glaucoma detection to support our study. The imbalance between normal and glaucomatous cases leads to performance degradation of classifier models. By combining our proposed framework leveraging diffusion models with a pretraining approach, we created a more robust classifier training process. This training process results in a better-performing classifier. The proposed approach shows promising results in improving the harmonic mean (sensitivity and specificity) and AUC for the roc for the glaucoma classifier. We report an improvement in the harmonic mean metric from 89.09% to 92.59% on the test set of our national dataset. We examine our method against other methods to overcome imbalance through extensive experiments. We report similar improvements on the AIROGS dataset. This study highlights that diffusion-based generation can be of great importance in tackling class imbalances in medical datasets to improve diagnostic performance.
Related papers
- Deep Learning to Predict Glaucoma Progression using Structural Changes in the Eye [0.20718016474717196]
Glaucoma is a chronic eye disease characterized by optic neuropathy, leading to irreversible vision loss.
Early detection is crucial to monitor atrophy and develop treatment strategies to prevent further vision impairment.
In this study, we use deep learning models to identify complex disease traits and progression criteria.
arXiv Detail & Related papers (2024-06-09T01:12:41Z) - Transformer-Based Self-Supervised Learning for Histopathological Classification of Ischemic Stroke Clot Origin [0.0]
Identifying the thromboembolism source in ischemic stroke is crucial for treatment and secondary prevention.
This study describes a self-supervised deep learning approach in digital pathology of emboli for classifying ischemic stroke clot origin.
arXiv Detail & Related papers (2024-05-01T23:40:12Z) - Debiasing Cardiac Imaging with Controlled Latent Diffusion Models [1.802269171647208]
We propose a method to alleviate imbalances inherent in datasets through the generation of synthetic data.
We adopt ControlNet based on a denoising diffusion probabilistic model to condition on text assembled from patient metadata and cardiac geometry.
Our experiments demonstrate the effectiveness of the proposed approach in mitigating dataset imbalances.
arXiv Detail & Related papers (2024-03-28T15:41:43Z) - Leveraging Semi-Supervised Graph Learning for Enhanced Diabetic
Retinopathy Detection [0.0]
Diabetic Retinopathy (DR) is a significant cause of blindness globally, highlighting the urgent need for early detection and effective treatment.
Recent advancements in Machine Learning (ML) techniques have shown promise in DR detection, but the availability of labeled data often limits their performance.
This research proposes a novel Semi-Supervised Graph Learning SSGL algorithm tailored for DR detection.
arXiv Detail & Related papers (2023-09-02T04:42:08Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Semantic Latent Space Regression of Diffusion Autoencoders for Vertebral
Fracture Grading [72.45699658852304]
This paper proposes a novel approach to train a generative Diffusion Autoencoder model as an unsupervised feature extractor.
We model fracture grading as a continuous regression, which is more reflective of the smooth progression of fractures.
Importantly, the generative nature of our method allows us to visualize different grades of a given vertebra, providing interpretability and insight into the features that contribute to automated grading.
arXiv Detail & Related papers (2023-03-21T17:16:01Z) - Knowledge distillation with a class-aware loss for endoscopic disease
detection [1.1470070927586016]
In this work, we leverage deep learning to develop a framework to improve the localization of difficult to detect lesions.
Our model achieves higher performance in terms of mean average precision (mAP) on both endoscopic disease detection challenge and Kvasir-SEG datasets.
arXiv Detail & Related papers (2022-07-19T19:56:12Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.