Attention-based Generative Latent Replay: A Continual Learning Approach for WSI Analysis
- URL: http://arxiv.org/abs/2505.08524v1
- Date: Tue, 13 May 2025 12:55:46 GMT
- Title: Attention-based Generative Latent Replay: A Continual Learning Approach for WSI Analysis
- Authors: Pratibha Kumari, Daniel Reisenbüchler, Afshin Bozorgpour, Nadine S. Schaadt, Friedrich Feuerhake, Dorit Merhof,
- Abstract summary: Whole slide image (WSI) classification has emerged as a powerful tool in computational pathology, but remains constrained by domain shifts.<n>We propose an Attention-based Generative Latent Replay Continual Learning framework (AGLR-CL), in a multiple instance learning (MIL) setup for domain incremental WSI classification.
- Score: 3.6630930118966814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Whole slide image (WSI) classification has emerged as a powerful tool in computational pathology, but remains constrained by domain shifts, e.g., due to different organs, diseases, or institution-specific variations. To address this challenge, we propose an Attention-based Generative Latent Replay Continual Learning framework (AGLR-CL), in a multiple instance learning (MIL) setup for domain incremental WSI classification. Our method employs Gaussian Mixture Models (GMMs) to synthesize WSI representations and patch count distributions, preserving knowledge of past domains without explicitly storing original data. A novel attention-based filtering step focuses on the most salient patch embeddings, ensuring high-quality synthetic samples. This privacy-aware strategy obviates the need for replay buffers and outperforms other buffer-free counterparts while matching the performance of buffer-based solutions. We validate AGLR-CL on clinically relevant biomarker detection and molecular status prediction across multiple public datasets with diverse centers, organs, and patient cohorts. Experimental results confirm its ability to retain prior knowledge and adapt to new domains, offering an effective, privacy-preserving avenue for domain incremental continual learning in WSI classification.
Related papers
- Transformer-Driven Active Transfer Learning for Cross-Hyperspectral Image Classification [3.087068801861429]
Hyperspectral image (HSI) classification presents inherent challenges due to high spectral dimensionality, significant domain shifts, and limited availability of labeled data.<n>We propose a novel Active Transfer Learning (ATL) framework built upon a Spatial-Spectral Transformer (SST) backbone.<n>The framework integrates multistage transfer learning with an uncertainty-diversity-driven active learning mechanism.
arXiv Detail & Related papers (2024-11-27T07:53:39Z) - Continual Domain Incremental Learning for Privacy-aware Digital Pathology [3.6630930118966814]
Continual learning (CL) techniques aim to reduce the forgetting of past data when learning new data with distributional shift conditions.
We develop a Generative Latent Replay-based CL (GLRCL) approach to store past data and perform latent replay with new data.
arXiv Detail & Related papers (2024-09-10T12:21:54Z) - An efficient framework based on large foundation model for cervical cytopathology whole slide image screening [13.744580492120749]
We propose an efficient framework for cervical cytopathology WSI classification using only WSI-level labels through unsupervised and weakly supervised learning.
Experiments conducted on the CSD and FNAC 2019 datasets demonstrate that the proposed method enhances the performance of various MIL methods and achieves state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2024-07-16T08:21:54Z) - ASPS: Augmented Segment Anything Model for Polyp Segmentation [77.25557224490075]
The Segment Anything Model (SAM) has introduced unprecedented potential for polyp segmentation.
SAM's Transformer-based structure prioritizes global and low-frequency information.
CFA integrates a trainable CNN encoder branch with a frozen ViT encoder, enabling the integration of domain-specific knowledge.
arXiv Detail & Related papers (2024-06-30T14:55:32Z) - RaffeSDG: Random Frequency Filtering enabled Single-source Domain Generalization for Medical Image Segmentation [41.50001361938865]
Deep learning models often encounter challenges in making accurate inferences when there are domain shifts between the source and target data.
We propose a Random frequency filtering enabled Single-source Domain Generalization algorithm (RaffeSDG)
RaffeSDG promises robust out-of-domain inference with segmentation models trained on a single-source domain.
arXiv Detail & Related papers (2024-05-02T12:13:00Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
Cross-domain keypoint detection methods always require accessing the source data during adaptation.
This paper considers source-free domain adaptive keypoint detection, where only the well-trained source model is provided to the target domain.
arXiv Detail & Related papers (2023-02-09T12:06:08Z) - GSMFlow: Generation Shifts Mitigating Flow for Generalized Zero-Shot
Learning [55.79997930181418]
Generalized Zero-Shot Learning aims to recognize images from both the seen and unseen classes by transferring semantic knowledge from seen to unseen classes.
It is a promising solution to take the advantage of generative models to hallucinate realistic unseen samples based on the knowledge learned from the seen classes.
We propose a novel flow-based generative framework that consists of multiple conditional affine coupling layers for learning unseen data generation.
arXiv Detail & Related papers (2022-07-05T04:04:37Z) - Generative Self-training for Cross-domain Unsupervised Tagged-to-Cine
MRI Synthesis [10.636015177721635]
We propose a novel generative self-training framework with continuous value prediction and regression objective for cross-domain image synthesis.
Specifically, we propose to filter the pseudo-label with an uncertainty mask, and quantify the predictive confidence of generated images with practical variational Bayes learning.
arXiv Detail & Related papers (2021-06-23T16:19:00Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Self-Challenging Improves Cross-Domain Generalization [81.99554996975372]
Convolutional Neural Networks (CNN) conduct image classification by activating dominant features that correlated with labels.
We introduce a simple training, Self-Challenging Representation (RSC), that significantly improves the generalization of CNN to the out-of-domain data.
RSC iteratively challenges the dominant features activated on the training data, and forces the network to activate remaining features that correlates with labels.
arXiv Detail & Related papers (2020-07-05T21:42:26Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
We introduce an unsupervised domain adaptation approach for person re-identification.
Experimental results show that the proposed ktCUDA and SHRED approach achieves an average improvement of +5.7 mAP in re-identification performance.
arXiv Detail & Related papers (2020-01-14T17:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.