Transformer-Driven Active Transfer Learning for Cross-Hyperspectral Image Classification
- URL: http://arxiv.org/abs/2411.18115v2
- Date: Wed, 09 Jul 2025 10:08:45 GMT
- Title: Transformer-Driven Active Transfer Learning for Cross-Hyperspectral Image Classification
- Authors: Muhammad Ahmad, Francesco Mauro, Manuel Mazzara, Salvatore Distefano, Adil Mehmood Khan, Silvia Liberata Ullo,
- Abstract summary: Hyperspectral image (HSI) classification presents inherent challenges due to high spectral dimensionality, significant domain shifts, and limited availability of labeled data.<n>We propose a novel Active Transfer Learning (ATL) framework built upon a Spatial-Spectral Transformer (SST) backbone.<n>The framework integrates multistage transfer learning with an uncertainty-diversity-driven active learning mechanism.
- Score: 3.087068801861429
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperspectral image (HSI) classification presents inherent challenges due to high spectral dimensionality, significant domain shifts, and limited availability of labeled data. To address these issues, we propose a novel Active Transfer Learning (ATL) framework built upon a Spatial-Spectral Transformer (SST) backbone. The framework integrates multistage transfer learning with an uncertainty-diversity-driven active learning mechanism that strategically selects highly informative and diverse samples for annotation, thereby significantly reducing labeling costs and mitigating sample redundancy. A dynamic layer freezing strategy is introduced to enhance transferability and computational efficiency, enabling selective adaptation of model layers based on domain shift characteristics. Furthermore, we incorporate a self-calibrated attention mechanism that dynamically refines spatial and spectral weights during adaptation, guided by uncertainty-aware feedback. A diversity-promoting sampling strategy ensures broad spectral coverage among selected samples, preventing overfitting to specific classes. Extensive experiments on benchmark cross-domain HSI datasets demonstrate that the proposed SST-ATL framework achieves superior classification performance compared to conventional approaches. The source code is publicly available at https://github.com/mahmad000/ATL-SST.
Related papers
- SDTN and TRN: Adaptive Spectral-Spatial Feature Extraction for Hyperspectral Image Classification [1.2871580250533408]
Hyperspectral image classification plays a pivotal role in precision agriculture, providing accurate insights into crop health monitoring, disease detection, and soil analysis.<n>Traditional methods struggle with high-dimensional data, spectral-spatial redundancy, and the scarcity of labeled samples, often leading to suboptimal performance.<n>To address these challenges, we propose the Self-Adaptive- Regularized Network (SDTN), which combines tensor decomposition with regularization mechanisms to dynamically adjust tensor ranks.<n>This approach not only maintains high classification accuracy but also significantly reduces computational complexity, making the framework highly suitable for real-time deployment in resource-constrained environments.
arXiv Detail & Related papers (2025-07-13T04:53:33Z) - Attention-based Generative Latent Replay: A Continual Learning Approach for WSI Analysis [3.6630930118966814]
Whole slide image (WSI) classification has emerged as a powerful tool in computational pathology, but remains constrained by domain shifts.<n>We propose an Attention-based Generative Latent Replay Continual Learning framework (AGLR-CL), in a multiple instance learning (MIL) setup for domain incremental WSI classification.
arXiv Detail & Related papers (2025-05-13T12:55:46Z) - Optimal Hyperspectral Undersampling Strategy for Satellite Imaging [0.0]
We propose a novel Iterative Wavelet-based Gradient Sampling (IWGS) method for hyperspectral image classification.<n>IWGS incrementally selects the most informative spectral bands by analyzing gradients within the wavelet-transformed domain.<n>We conduct comprehensive experiments on two widely-used benchmark HSI datasets: Houston 2013 and Indian Pines.<n>IWGS consistently outperforms state-of-the-art band selection and classification techniques in terms of both accuracy and computational efficiency.
arXiv Detail & Related papers (2025-04-27T15:33:33Z) - Unbiased Max-Min Embedding Classification for Transductive Few-Shot Learning: Clustering and Classification Are All You Need [83.10178754323955]
Few-shot learning enables models to generalize from only a few labeled examples.
We propose the Unbiased Max-Min Embedding Classification (UMMEC) Method, which addresses the key challenges in few-shot learning.
Our method significantly improves classification performance with minimal labeled data, advancing the state-of-the-art in annotatedL.
arXiv Detail & Related papers (2025-03-28T07:23:07Z) - Spatial-Spectral Diffusion Contrastive Representation Network for Hyperspectral Image Classification [8.600534616819333]
This paper presents a Spatial-Spectral Diffusion Contrastive Representation Network (DiffCRN)
DiffCRN is based on denoising diffusion probabilistic model (DDPM) combined with contrastive learning (CL) for hyperspectral images classification.
Experiments conducted on widely used four HSI datasets demonstrate the improved performance of the proposed DiffCRN.
arXiv Detail & Related papers (2025-02-27T02:34:23Z) - An Enhanced Classification Method Based on Adaptive Multi-Scale Fusion for Long-tailed Multispectral Point Clouds [67.96583737413296]
We propose an enhanced classification method based on adaptive multi-scale fusion for MPCs with long-tailed distributions.<n>In the training set generation stage, a grid-balanced sampling strategy is designed to reliably generate training samples from sparse labeled datasets.<n>In the feature learning stage, a multi-scale feature fusion module is proposed to fuse shallow features of land-covers at different scales.
arXiv Detail & Related papers (2024-12-16T03:21:20Z) - Hyperspectral Images Efficient Spatial and Spectral non-Linear Model with Bidirectional Feature Learning [7.06787067270941]
We propose a novel framework that significantly reduces data volume while enhancing classification accuracy.
Our model employs a bidirectional reversed convolutional neural network (CNN) to efficiently extract spectral features, complemented by a specialized block for spatial feature analysis.
arXiv Detail & Related papers (2024-11-29T23:32:26Z) - Boosting Transformer's Robustness and Efficacy in PPG Signal Artifact
Detection with Self-Supervised Learning [0.0]
This study addresses the underutilization of abundant unlabeled data by employing self-supervised learning (SSL) to extract latent features from this data.
Our experiments demonstrate that SSL significantly enhances the Transformer model's ability to learn representations.
This approach holds promise for broader applications in PICU environments, where annotated data is often limited.
arXiv Detail & Related papers (2024-01-02T04:00:48Z) - Semi-Supervised Class-Agnostic Motion Prediction with Pseudo Label
Regeneration and BEVMix [59.55173022987071]
We study the potential of semi-supervised learning for class-agnostic motion prediction.
Our framework adopts a consistency-based self-training paradigm, enabling the model to learn from unlabeled data.
Our method exhibits comparable performance to weakly and some fully supervised methods.
arXiv Detail & Related papers (2023-12-13T09:32:50Z) - DiffSpectralNet : Unveiling the Potential of Diffusion Models for
Hyperspectral Image Classification [6.521187080027966]
We propose a new network called DiffSpectralNet, which combines diffusion and transformer techniques.
First, we use an unsupervised learning framework based on the diffusion model to extract both high-level and low-level spectral-spatial features.
The diffusion method is capable of extracting diverse and meaningful spectral-spatial features, leading to improvement in HSI classification.
arXiv Detail & Related papers (2023-10-29T15:26:37Z) - Exploiting Low-confidence Pseudo-labels for Source-free Object Detection [54.98300313452037]
Source-free object detection (SFOD) aims to adapt a source-trained detector to an unlabeled target domain without access to the labeled source data.
Current SFOD methods utilize a threshold-based pseudo-label approach in the adaptation phase.
We propose a new approach to take full advantage of pseudo-labels by introducing high and low confidence thresholds.
arXiv Detail & Related papers (2023-10-19T12:59:55Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - Hybrid Spectral Denoising Transformer with Guided Attention [34.34075175179669]
We present a Hybrid Spectral Denoising Transformer (HSDT) for hyperspectral image denoising.
Our HSDT significantly outperforms the existing state-of-the-art methods while maintaining low computational overhead.
arXiv Detail & Related papers (2023-03-16T02:24:31Z) - Spectrum-BERT: Pre-training of Deep Bidirectional Transformers for
Spectral Classification of Chinese Liquors [0.0]
We propose a pre-training method of deep bidirectional transformers for spectral classification of Chinese liquors, abbreviated as Spectrum-BERT.
We elaborately design two pre-training tasks, Next Curve Prediction (NCP) and Masked Curve Model (MCM), so that the model can effectively utilize unlabeled samples.
In the comparative experiments, the proposed Spectrum-BERT significantly outperforms the baselines in multiple metrics.
arXiv Detail & Related papers (2022-10-22T13:11:25Z) - Towards Automated Imbalanced Learning with Deep Hierarchical
Reinforcement Learning [57.163525407022966]
Imbalanced learning is a fundamental challenge in data mining, where there is a disproportionate ratio of training samples in each class.
Over-sampling is an effective technique to tackle imbalanced learning through generating synthetic samples for the minority class.
We propose AutoSMOTE, an automated over-sampling algorithm that can jointly optimize different levels of decisions.
arXiv Detail & Related papers (2022-08-26T04:28:01Z) - GSMFlow: Generation Shifts Mitigating Flow for Generalized Zero-Shot
Learning [55.79997930181418]
Generalized Zero-Shot Learning aims to recognize images from both the seen and unseen classes by transferring semantic knowledge from seen to unseen classes.
It is a promising solution to take the advantage of generative models to hallucinate realistic unseen samples based on the knowledge learned from the seen classes.
We propose a novel flow-based generative framework that consists of multiple conditional affine coupling layers for learning unseen data generation.
arXiv Detail & Related papers (2022-07-05T04:04:37Z) - MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral
Reconstruction [148.26195175240923]
We propose a novel Transformer-based method, Multi-stage Spectral-wise Transformer (MST++) for efficient spectral reconstruction.
In the NTIRE 2022 Spectral Reconstruction Challenge, our approach won the First place.
arXiv Detail & Related papers (2022-04-17T02:39:32Z) - Coarse-to-Fine Sparse Transformer for Hyperspectral Image Reconstruction [138.04956118993934]
We propose a novel Transformer-based method, coarse-to-fine sparse Transformer (CST)
CST embedding HSI sparsity into deep learning for HSI reconstruction.
In particular, CST uses our proposed spectra-aware screening mechanism (SASM) for coarse patch selecting. Then the selected patches are fed into our customized spectra-aggregation hashing multi-head self-attention (SAH-MSA) for fine pixel clustering and self-similarity capturing.
arXiv Detail & Related papers (2022-03-09T16:17:47Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
We propose a novel Consistency and Diversity induced human Motion (CDMS) algorithm.
Our model factorizes the source and target data into distinct multi-layer feature spaces.
A multi-mutual learning strategy is carried out to reduce the domain gap between the source and target data.
arXiv Detail & Related papers (2022-02-10T06:23:56Z) - Learning Aligned Cross-Modal Representation for Generalized Zero-Shot
Classification [17.177622259867515]
We propose an innovative autoencoder network by learning Aligned Cross-Modal Representations (dubbed ACMR) for Generalized Zero-Shot Classification (GZSC)
Specifically, we propose a novel Vision-Semantic Alignment (VSA) method to strengthen the alignment of cross-modal latent features on the latent subspaces guided by a learned classifier.
In addition, we propose a novel Information Enhancement Module (IEM) to reduce the possibility of latent variables collapse meanwhile encouraging the discriminative ability of latent variables.
arXiv Detail & Related papers (2021-12-24T03:35:37Z) - Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image
Reconstruction [127.20208645280438]
Hyperspectral image (HSI) reconstruction aims to recover the 3D spatial-spectral signal from a 2D measurement.
Modeling the inter-spectra interactions is beneficial for HSI reconstruction.
Mask-guided Spectral-wise Transformer (MST) proposes a novel framework for HSI reconstruction.
arXiv Detail & Related papers (2021-11-15T16:59:48Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
In many real-world problems, collecting a large number of labeled samples is infeasible.
Few-shot learning is the dominant approach to address this issue, where the objective is to quickly adapt to novel categories in presence of a limited number of samples.
We propose a novel training mechanism that simultaneously enforces equivariance and invariance to a general set of geometric transformations.
arXiv Detail & Related papers (2021-03-01T21:14:33Z) - Improving Deep Hyperspectral Image Classification Performance with
Spectral Unmixing [3.84448093764973]
We propose an abundance-based multi-HSI classification method.
We convert every HSI from the spectral domain to the abundance domain by a dataset-specific autoencoder.
Secondly, the abundance representations from multiple HSIs are collected to form an enlarged dataset.
arXiv Detail & Related papers (2020-04-01T17:14:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.