Resource-Efficient Language Models: Quantization for Fast and Accessible Inference
- URL: http://arxiv.org/abs/2505.08620v1
- Date: Tue, 13 May 2025 14:39:33 GMT
- Title: Resource-Efficient Language Models: Quantization for Fast and Accessible Inference
- Authors: Tollef Emil Jørgensen,
- Abstract summary: Large language models have significantly advanced natural language processing, yet their heavy resource demands pose challenges regarding hardware accessibility and energy consumption.<n>This paper presents a focused and high-level review of post-training quantization techniques designed to optimize the inference efficiency of LLMs by the end-user.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models have significantly advanced natural language processing, yet their heavy resource demands pose severe challenges regarding hardware accessibility and energy consumption. This paper presents a focused and high-level review of post-training quantization (PTQ) techniques designed to optimize the inference efficiency of LLMs by the end-user, including details on various quantization schemes, granularities, and trade-offs. The aim is to provide a balanced overview between the theory and applications of post-training quantization.
Related papers
- Discrete Tokenization for Multimodal LLMs: A Comprehensive Survey [69.45421620616486]
This work presents the first structured taxonomy and analysis of discrete tokenization methods designed for large language models (LLMs)<n>We categorize 8 representative VQ variants that span classical and modern paradigms and analyze their algorithmic principles, training dynamics, and integration challenges with LLM pipelines.<n>We identify key challenges including codebook collapse, unstable gradient estimation, and modality-specific encoding constraints.
arXiv Detail & Related papers (2025-07-21T10:52:14Z) - Sustainable LLM Inference for Edge AI: Evaluating Quantized LLMs for Energy Efficiency, Output Accuracy, and Inference Latency [6.306413686006502]
We conduct a comprehensive analysis of 28 quantized Large Language Models (LLMs) from the Ollama library.<n>We evaluate energy efficiency, inference performance, and output accuracy across multiple quantization levels and task types.<n>Our findings reveal the trade-offs between energy efficiency, inference speed, and accuracy in different quantization settings.
arXiv Detail & Related papers (2025-04-04T11:29:30Z) - Binary Neural Networks for Large Language Model: A Survey [6.8834621543726815]
Low-bit quantization, as a key technique, reduces memory usage and computational demands by decreasing the bit-width of model parameters.<n>The BitNet team proposed a radically different approach, where quantization is performed from the start of model training, utilizing low-precision binary weights.<n>This paper provides a comprehensive review of these binary quantization techniques.
arXiv Detail & Related papers (2025-02-26T10:14:19Z) - A Comprehensive Study on Quantization Techniques for Large Language Models [0.0]
Large Language Models (LLMs) have been extensively researched and used in both academia and industry.
LLMs present significant challenges for deployment on resource-constrained IoT devices and embedded systems.
Quantization, a technique that reduces the precision of model values to a smaller set of discrete values, offers a promising solution.
arXiv Detail & Related papers (2024-10-30T04:55:26Z) - Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [49.362750475706235]
Reinforcement Learning (RL) plays a crucial role in aligning large language models with human preferences and improving their ability to perform complex tasks.<n>We introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model.<n> Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
arXiv Detail & Related papers (2024-10-11T23:29:20Z) - A Survey of Low-bit Large Language Models: Basics, Systems, and Algorithms [34.818641985348805]
Large language models (LLMs) have achieved remarkable advancements in natural language processing.
However, the expensive memory and computational requirements present significant challenges for their practical deployment.
Low-bit quantization has emerged as a critical approach to mitigate these challenges by reducing the bit-width of model parameters.
arXiv Detail & Related papers (2024-09-25T07:38:02Z) - Advancing Multimodal Large Language Models with Quantization-Aware Scale Learning for Efficient Adaptation [70.22782550540714]
Quantization-aware Scale LeArning method based on multimodal Warmup, termed QSLAW.
We introduce a Quantization-aware Scale LeArning method based on multimodal Warmup, termed QSLAW.
arXiv Detail & Related papers (2024-08-07T12:42:09Z) - Compensate Quantization Errors+: Quantized Models Are Inquisitive Learners [17.43650511873449]
Large Language Models (LLMs) showcase remarkable performance and robust deductive capabilities, yet their expansive size complicates deployment and raises environmental concerns due to substantial resource consumption.
We have developed innovative methods that enhance the performance of quantized LLMs, particularly in low-bit settings.
Our methods consistently deliver state-of-the-art results across various quantization scenarios and offer deep theoretical insights into the quantization process, elucidating the potential of quantized models for widespread application.
arXiv Detail & Related papers (2024-07-22T09:45:16Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
Quantization, a key compression technique, can effectively mitigate these demands by compressing and accelerating large language models.
We present LLMC, a plug-and-play compression toolkit, to fairly and systematically explore the impact of quantization.
Powered by this versatile toolkit, our benchmark covers three key aspects: calibration data, algorithms (three strategies), and data formats.
arXiv Detail & Related papers (2024-05-09T11:49:05Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - PreQuant: A Task-agnostic Quantization Approach for Pre-trained Language
Models [52.09865918265002]
We propose a novel quantize before fine-tuning'' framework, PreQuant.
PreQuant is compatible with various quantization strategies, with outlier-aware fine-tuning incorporated to correct the induced quantization error.
We demonstrate the effectiveness of PreQuant on the GLUE benchmark using BERT, RoBERTa, and T5.
arXiv Detail & Related papers (2023-05-30T08:41:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.