Learning cardiac activation and repolarization times with operator learning
- URL: http://arxiv.org/abs/2505.08631v1
- Date: Tue, 13 May 2025 14:50:16 GMT
- Title: Learning cardiac activation and repolarization times with operator learning
- Authors: Edoardo Centofanti, Giovanni Ziarelli, Nicola Parolini, Simone Scacchi, Marco Verani, Luca Franco Pavarino,
- Abstract summary: We exploit two recently proposed operator learning approaches, namely Fourier Neural Operators (FNO) and Kernel Operator Learning (KOL)<n>We learn the operator mapping the applied stimulus in the physical domain into the activation and repolarization time distributions.<n>These data-driven methods are evaluated on synthetic 2D and 3D domains, as well as on a physiologically realistic left ventricle geometry.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solving partial or ordinary differential equation models in cardiac electrophysiology is a computationally demanding task, particularly when high-resolution meshes are required to capture the complex dynamics of the heart. Moreover, in clinical applications, it is essential to employ computational tools that provide only relevant information, ensuring clarity and ease of interpretation. In this work, we exploit two recently proposed operator learning approaches, namely Fourier Neural Operators (FNO) and Kernel Operator Learning (KOL), to learn the operator mapping the applied stimulus in the physical domain into the activation and repolarization time distributions. These data-driven methods are evaluated on synthetic 2D and 3D domains, as well as on a physiologically realistic left ventricle geometry. Notably, while the learned map between the applied current and activation time has its modelling counterpart in the Eikonal model, no equivalent partial differential equation (PDE) model is known for the map between the applied current and repolarization time. Our results demonstrate that both FNO and KOL approaches are robust to hyperparameter choices and computationally efficient compared to traditional PDE-based Monodomain models. These findings highlight the potential use of these surrogate operators to accelerate cardiac simulations and facilitate their clinical integration.
Related papers
- Fractional Spike Differential Equations Neural Network with Efficient Adjoint Parameters Training [63.3991315762955]
Spiking Neural Networks (SNNs) draw inspiration from biological neurons to create realistic models for brain-like computation.<n>Most existing SNNs assume a single time constant for neuronal membrane voltage dynamics, modeled by first-order ordinary differential equations (ODEs) with Markovian characteristics.<n>We propose the Fractional SPIKE Differential Equation neural network (fspikeDE), which captures long-term dependencies in membrane voltage and spike trains through fractional-order dynamics.
arXiv Detail & Related papers (2025-07-22T18:20:56Z) - Enhanced Vascular Flow Simulations in Aortic Aneurysm via Physics-Informed Neural Networks and Deep Operator Networks [0.0]
PINNs, Deep Operator Networks (DeepONets), and their Physics-Informed extensions (PI-DeepONets) are studied.<n>We adapt the approaches to address the particular use case of AAA by integrating the 3D Navier-Stokes equations.<n> advantages and limitations of each approach are highlighted through a series of relevant application cases.
arXiv Detail & Related papers (2025-03-19T22:38:52Z) - No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs [56.78271181959529]
This paper proposes a conceptual shift to modeling low-dimensional dynamical systems by departing from the traditional two-step modeling process.<n>Instead of first discovering a closed-form equation and then analyzing it, our approach, direct semantic modeling, predicts the semantic representation of the dynamical system.<n>Our approach not only simplifies the modeling pipeline but also enhances the transparency and flexibility of the resulting models.
arXiv Detail & Related papers (2025-01-30T18:36:48Z) - DeltaPhi: Learning Physical Trajectory Residual for PDE Solving [54.13671100638092]
We propose and formulate the Physical Trajectory Residual Learning (DeltaPhi)
We learn the surrogate model for the residual operator mapping based on existing neural operator networks.
We conclude that, compared to direct learning, physical residual learning is preferred for PDE solving.
arXiv Detail & Related papers (2024-06-14T07:45:07Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - PICL: Physics Informed Contrastive Learning for Partial Differential Equations [7.136205674624813]
We develop a novel contrastive pretraining framework that improves neural operator generalization across multiple governing equations simultaneously.
A combination of physics-informed system evolution and latent-space model output are anchored to input data and used in our distance function.
We find that physics-informed contrastive pretraining improves accuracy for the Fourier Neural Operator in fixed-future and autoregressive rollout tasks for the 1D and 2D Heat, Burgers', and linear advection equations.
arXiv Detail & Related papers (2024-01-29T17:32:22Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
We propose Equivariant Graph Neural Operator (EGNO) to directly models dynamics as trajectories instead of just next-step prediction.
EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it.
Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods.
arXiv Detail & Related papers (2024-01-19T21:50:32Z) - Analysing Rescaling, Discretization, and Linearization in RNNs for Neural System Modelling [0.0]
Recurrent Neural Networks (RNNs) are widely used for modelling neural activity, yet the mathematical interplay of core procedures is uncharacterized.<n>This study establishes the conditions under which these procedures commute, enabling flexible application in computational neuroscience.<n>Our findings directly guide the design of biologically plausible RNNs for simulating neural dynamics in decision-making and motor control.
arXiv Detail & Related papers (2023-12-26T10:00:33Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.<n>We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.<n>Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Deep Computational Model for the Inference of Ventricular Activation
Properties [10.886815576856574]
Patient-specific cardiac computational models are essential for the efficient realization of precision medicine and in-silico clinical trials using digital twins.
We propose a deep learning based patient-specific computational model, which can fuse both anatomical and electrophysiological information for the inference of ventricular activation properties.
We employ the Eikonal model to generate simulated electrocardiogram with ground truth properties to train the inference model, where specific patient information has also been considered.
arXiv Detail & Related papers (2022-08-08T10:23:43Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
We present a novel method that combines a hyper-network solver with a Fourier Neural Operator architecture.
We test our method on various time evolution PDEs, including nonlinear fluid flows in one, two, and three spatial dimensions.
The results show that the new method improves the learning accuracy at the time point of supervision point, and is able to interpolate and the solutions to any intermediate time.
arXiv Detail & Related papers (2022-07-28T19:59:14Z) - Deep Spatio-temporal Sparse Decomposition for Trend Prediction and
Anomaly Detection in Cardiac Electrical Conduction [11.076265159072229]
We propose a deep-temporal decomposition (DSTSD) approach to bypass the time-consuming cardiac partial differential equations.
This approach is validated from the data set generated from the Courtemanche-amirez-Nattel neuron (CRN) model.
arXiv Detail & Related papers (2021-09-20T06:38:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.