Runtime Quantum Advantage with Digital Quantum Optimization
- URL: http://arxiv.org/abs/2505.08663v1
- Date: Tue, 13 May 2025 15:24:17 GMT
- Title: Runtime Quantum Advantage with Digital Quantum Optimization
- Authors: Pranav Chandarana, Alejandro Gomez Cadavid, Sebastián V. Romero, Anton Simen, Enrique Solano, Narendra N. Hegade,
- Abstract summary: bias-field digitized counterdiabatic quantum optimization (BF-DCQO) algorithm on IBM's 156-qubit devices.<n>We suitably select problem instances that are challenging for classical methods, running in fractions of minutes even with multicore processors.<n>Our results indicate that available digital quantum processors, when combined with specific-purpose quantum algorithms, exhibit a runtime quantum advantage even in the absence of quantum error correction.
- Score: 36.136619420474766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate experimentally that the bias-field digitized counterdiabatic quantum optimization (BF-DCQO) algorithm on IBM's 156-qubit devices can outperform simulated annealing (SA) and CPLEX in time-to-approximate solutions for specific higher-order unconstrained binary optimization (HUBO) problems. We suitably select problem instances that are challenging for classical methods, running in fractions of minutes even with multicore processors. On the other hand, our counterdiabatic quantum algorithms obtain similar or better results in at most a few seconds on quantum hardware, achieving runtime quantum advantage. Our analysis reveals that the performance improvement becomes increasingly evident as the system size grows. Given the rapid progress in quantum hardware, we expect that this improvement will become even more pronounced, potentially leading to a quantum advantage of several orders of magnitude. Our results indicate that available digital quantum processors, when combined with specific-purpose quantum algorithms, exhibit a runtime quantum advantage even in the absence of quantum error correction.
Related papers
- Quantum Subroutines in Branch-Price-and-Cut for Vehicle Routing [0.0]
We demonstrate in this work how quantums with limited resources can be integrated in large-scale exact optimization algorithms for NP-hard problems.<n>A key feature of our algorithm is it not only from the best solution returned by the quantum but from all solutions below a certain cost threshold.
arXiv Detail & Related papers (2024-12-20T08:27:23Z) - On Reducing the Execution Latency of Superconducting Quantum Processors via Quantum Job Scheduling [47.39648643132327]
We introduce the Quantum Job Scheduling Problem (QJSP) to improve the utility efficiency of quantum resources.<n>We propose a noise-aware quantum job scheduler (NAQJS) concerning the circuit width, number of measurement shots, and submission time of quantum jobs.<n>We conduct extensive experiments on a simulated Qiskit noise model, as well as on the Xiaohong (from QuantumCTek) superconducting quantum processor.
arXiv Detail & Related papers (2024-04-11T16:12:01Z) - Scalable Quantum Algorithms for Noisy Quantum Computers [0.0]
This thesis develops two main techniques to reduce the quantum computational resource requirements.
The aim is to scale up application sizes on current quantum processors.
While the main focus of application for our algorithms is the simulation of quantum systems, the developed subroutines can further be utilized in the fields of optimization or machine learning.
arXiv Detail & Related papers (2024-03-01T19:36:35Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - QuBEC: Boosting Equivalence Checking for Quantum Circuits with QEC
Embedding [4.15692939468851]
We propose a Decision Diagram-based quantum equivalence checking approach, QuBEC, that requires less latency compared to existing techniques.
Our proposed methodology reduces verification time on certain benchmark circuits by up to $271.49 times$.
arXiv Detail & Related papers (2023-09-19T16:12:37Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - The Future of Quantum Computing with Superconducting Qubits [2.6668731290542222]
We see a branching point in computing paradigms with the emergence of quantum processing units (QPUs)
Extracting the full potential of computation and realizing quantum algorithms with a super-polynomial speedup will most likely require major advances in quantum error correction technology.
Long term, we see hardware that exploits qubit connectivity in higher than 2D topologies to realize more efficient quantum error correcting codes.
arXiv Detail & Related papers (2022-09-14T18:00:03Z) - Accelerating Variational Quantum Algorithms Using Circuit Concurrency [2.4718252151897886]
Variational quantum algorithms (VQAs) provide a promising approach to achieve quantum advantage in the noisy intermediate-scale quantum era.
We show that circuit-level iteration provides a means to increase the performance of VQAs on noisy quantum computers.
arXiv Detail & Related papers (2021-09-03T19:31:36Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.