Accelerating Variational Quantum Algorithms Using Circuit Concurrency
- URL: http://arxiv.org/abs/2109.01714v1
- Date: Fri, 3 Sep 2021 19:31:36 GMT
- Title: Accelerating Variational Quantum Algorithms Using Circuit Concurrency
- Authors: Salonik Resch, Anthony Gutierrez, Joon Suk Huh, Srikant Bharadwaj,
Yasuko Eckert, Gabriel Loh, Mark Oskin, Swamit Tannu
- Abstract summary: Variational quantum algorithms (VQAs) provide a promising approach to achieve quantum advantage in the noisy intermediate-scale quantum era.
We show that circuit-level iteration provides a means to increase the performance of VQAs on noisy quantum computers.
- Score: 2.4718252151897886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational quantum algorithms (VQAs) provide a promising approach to achieve
quantum advantage in the noisy intermediate-scale quantum era. In this era,
quantum computers experience high error rates and quantum error detection and
correction is not feasible. VQAs can utilize noisy qubits in tandem with
classical optimization algorithms to solve hard problems. However, VQAs are
still slow relative to their classical counterparts. Hence, improving the
performance of VQAs will be necessary to make them competitive. While VQAs are
expected perform better as the problem sizes increase, increasing their
performance will make them a viable option sooner. In this work we show that
circuit-level concurrency provides a means to increase the performance of
variational quantum algorithms on noisy quantum computers. This involves
mapping multiple instances of the same circuit (program) onto the quantum
computer at the same time, which allows multiple samples in a variational
quantum algorithm to be gathered in parallel for each training iteration. We
demonstrate that this technique provides a linear increase in training speed
when increasing the number of concurrently running quantum circuits.
Furthermore, even with pessimistic error rates concurrent quantum circuit
sampling can speed up the quantum approximate optimization algorithm by up to
20x with low mapping and run time overhead.
Related papers
- Scalable Quantum Algorithms for Noisy Quantum Computers [0.0]
This thesis develops two main techniques to reduce the quantum computational resource requirements.
The aim is to scale up application sizes on current quantum processors.
While the main focus of application for our algorithms is the simulation of quantum systems, the developed subroutines can further be utilized in the fields of optimization or machine learning.
arXiv Detail & Related papers (2024-03-01T19:36:35Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - QuBEC: Boosting Equivalence Checking for Quantum Circuits with QEC
Embedding [4.15692939468851]
We propose a Decision Diagram-based quantum equivalence checking approach, QuBEC, that requires less latency compared to existing techniques.
Our proposed methodology reduces verification time on certain benchmark circuits by up to $271.49 times$.
arXiv Detail & Related papers (2023-09-19T16:12:37Z) - Quantum Circuit Optimization through Iteratively Pre-Conditioned
Gradient Descent [0.4915744683251151]
iteratively preconditioned gradient descent (IPG) for optimizing quantum circuits and demonstrate performance speedups for state preparation and implementation of quantum algorithmics.
We show an improvement in fidelity by a factor of $104$ for preparing a 4-qubit W state and a maximally entangled 5-qubit GHZ state compared to other commonly used classicals tuning the same ansatz.
We also show gains for optimizing a unitary for a quantum Fourier transform using IPG, and report results of running such optimized circuits on IonQ's quantum processing unit (QPU)
arXiv Detail & Related papers (2023-09-18T17:30:03Z) - Parallel circuit implementation of variational quantum algorithms [0.0]
We present a method to split quantum circuits of variational quantum algorithms (VQAs) to allow for parallel training and execution.
We apply this specifically to optimization problems, where inherent structures from the problem can be identified.
We show that not only can our method address larger problems, but that it is also possible to run full VQA models while training parameters using only one slice.
arXiv Detail & Related papers (2023-04-06T12:52:29Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.