論文の概要: Template-Guided Reconstruction of Pulmonary Segments with Neural Implicit Functions
- arxiv url: http://arxiv.org/abs/2505.08919v1
- Date: Tue, 13 May 2025 19:31:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-15 21:44:09.285895
- Title: Template-Guided Reconstruction of Pulmonary Segments with Neural Implicit Functions
- Title(参考訳): テンプレートガイドによるニューラルインシシット機能を有する肺分節の再建
- Authors: Kangxian Xie, Yufei Zhu, Kaiming Kuang, Li Zhang, Hongwei Bran Li, Mingchen Gao, Jiancheng Yang,
- Abstract要約: 肺がんの分節切除と外科的治療計画において,高品質な肺部分の3D再構成が重要な役割を担っている。
そこで我々は, 解剖学的, 正確な肺セグメント再構築を実現するために, 3次元表面を学習する神経暗黙関数に基づく手法を提案する。
- 参考スコア(独自算出の注目度): 11.729079981556012
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-quality 3D reconstruction of pulmonary segments plays a crucial role in segmentectomy and surgical treatment planning for lung cancer. Due to the resolution requirement of the target reconstruction, conventional deep learning-based methods often suffer from computational resource constraints or limited granularity. Conversely, implicit modeling is favored due to its computational efficiency and continuous representation at any resolution. We propose a neural implicit function-based method to learn a 3D surface to achieve anatomy-aware, precise pulmonary segment reconstruction, represented as a shape by deforming a learnable template. Additionally, we introduce two clinically relevant evaluation metrics to assess the reconstruction comprehensively. Further, due to the absence of publicly available shape datasets to benchmark reconstruction algorithms, we developed a shape dataset named Lung3D, including the 3D models of 800 labeled pulmonary segments and the corresponding airways, arteries, veins, and intersegmental veins. We demonstrate that the proposed approach outperforms existing methods, providing a new perspective for pulmonary segment reconstruction. Code and data will be available at https://github.com/M3DV/ImPulSe.
- Abstract(参考訳): 肺がんの分節切除と外科的治療計画において,高品質な肺部分の3D再構成が重要な役割を担っている。
目的再構成の解決要件のため、従来のディープラーニングベースの手法は、計算資源の制約や限定的な粒度に悩まされることが多い。
逆に、暗黙のモデリングは、その計算効率と任意の解像度での連続表現のために好まれる。
学習可能なテンプレートを変形させて形状を表現した解剖学的,正確な肺セグメント再構成を実現するために,3次元表面を学習する神経暗黙関数に基づく手法を提案する。
さらに,再建を包括的に評価するために,臨床的に関連性のある2つの評価指標を導入する。
さらに, 再構成アルゴリズムのベンチマークを行うために利用可能な形状データセットが存在しないため, Lung3Dという形状データセットを開発し, 800個のラベル付き肺セグメントの3次元モデルと対応する気道, 動脈, 静脈, 分節静脈の3次元モデルについて検討した。
提案手法は既存の方法よりも優れており,肺部分再建の新しい視点を提供する。
コードとデータはhttps://github.com/M3DV/ImPulSeで入手できる。
関連論文リスト
- Self-adaptive vision-language model for 3D segmentation of pulmonary artery and vein [18.696258519327095]
本稿では,言語誘導型自己適応型クロスアテンション・フュージョン・フレームワークを提案する。
提案手法は,3次元CTスキャンのセグメンテーションを生成するための強力な特徴抽出器として,事前訓練したCLIPを採用している。
これまでで最大の肺動脈ベインCTデータセットである局所的データセットを用いて,本手法を広範囲に検証した。
論文 参考訳(メタデータ) (2025-01-07T12:03:02Z) - ReshapeIT: Reliable Shape Interaction with Implicit Template for Anatomical Structure Reconstruction [59.971808117043366]
ReShapeITは、同じカテゴリ内で共有される暗黙のテンプレートフィールドを持つ解剖学的構造を表す。
これにより、インスタンス形状とテンプレート形状との対応性の制約を強化することにより、暗黙テンプレートフィールドが有効なテンプレートを生成する。
テンプレートインタラクションモジュールは、有効なテンプレートシェイプとインスタンスワイドの潜在コードとを相互作用することで、目に見えないシェイプを再構築するために導入される。
論文 参考訳(メタデータ) (2023-12-11T07:09:32Z) - Interpretable 2D Vision Models for 3D Medical Images [47.75089895500738]
本研究では,3次元画像処理における中間特徴表現を用いた2次元ネットワークの適応手法を提案する。
我々は、ベンチマークとして3D MedMNISTデータセットと、既存の手法に匹敵する数百の高分解能CTまたはMRIスキャンからなる2つの実世界のデータセットを示す。
論文 参考訳(メタデータ) (2023-07-13T08:27:09Z) - Abdominal organ segmentation via deep diffeomorphic mesh deformations [5.4173776411667935]
CTとMRIによる腹部臓器の分節は,手術計画とコンピュータ支援ナビゲーションシステムにとって必須の要件である。
肝, 腎, 膵, 脾の分節に対するテンプレートベースのメッシュ再構成法を応用した。
結果として得られたUNetFlowは4つの器官すべてによく当てはまり、新しいデータに基づいて簡単に微調整できる。
論文 参考訳(メタデータ) (2023-06-27T14:41:18Z) - What Makes for Automatic Reconstruction of Pulmonary Segments [50.216231776343115]
肺の3次元再構成は肺癌の外科的治療計画において重要な役割を担っている。
しかし, 深層学習の時代には, 肺部分の自動再建は行われていない。
肺セグメント再建のための深部暗黙表面モデルImPulSeを提案する。
論文 参考訳(メタデータ) (2022-07-07T04:24:17Z) - Unsupervised Domain Adaptation through Shape Modeling for Medical Image
Segmentation [23.045760366698634]
医用画像のセグメンテーションを支援するために, 形状を明示的にモデル化し, 利用することを目的としている。
従来の方法では、特定の臓器の形状の分布を学習するための変分オートエンコーダ(VAE)モデルが提案されていた。
本研究では,教師/学生の学習パラダイムの下で,擬似的損失とVAE再構成損失に基づく教師なしドメイン適応パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-06T09:16:42Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Deep Residual 3D U-Net for Joint Segmentation and Texture Classification
of Nodules in Lung [91.3755431537592]
肺結節の分類法, そのテクスチャ分類, 肺CT像による後続の推奨について検討した。
提案手法は, 一般的なU-Netアーキテクチャファミリに基づくニューラルネットワークモデルと, 共同結節分割とそのテクスチャ分類タスクと, フォローアップレコメンデーションのためのアンサンブルベースモデルから構成される。
論文 参考訳(メタデータ) (2020-06-25T07:20:41Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
近年の研究では、3次元基底真理によって教師されるディープニューラルネットワークを介してパラメトリックモデルを直接推定する回帰に基づく手法が成功している。
本稿では,ボディセグメンテーションを重要な監視対象として紹介する。
部分分割による再構成を改善するために,部分分割により部分ベースモデルを制御可能な部分レベル微分可能部を提案する。
論文 参考訳(メタデータ) (2020-03-24T14:25:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。