論文の概要: Abdominal organ segmentation via deep diffeomorphic mesh deformations
- arxiv url: http://arxiv.org/abs/2306.15515v2
- Date: Mon, 30 Oct 2023 13:48:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 23:12:47.712707
- Title: Abdominal organ segmentation via deep diffeomorphic mesh deformations
- Title(参考訳): 深部微分型メッシュ変形による腹部臓器の分節
- Authors: Fabian Bongratz, Anne-Marie Rickmann, Christian Wachinger
- Abstract要約: CTとMRIによる腹部臓器の分節は,手術計画とコンピュータ支援ナビゲーションシステムにとって必須の要件である。
肝, 腎, 膵, 脾の分節に対するテンプレートベースのメッシュ再構成法を応用した。
結果として得られたUNetFlowは4つの器官すべてによく当てはまり、新しいデータに基づいて簡単に微調整できる。
- 参考スコア(独自算出の注目度): 5.4173776411667935
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Abdominal organ segmentation from CT and MRI is an essential prerequisite for
surgical planning and computer-aided navigation systems. It is challenging due
to the high variability in the shape, size, and position of abdominal organs.
Three-dimensional numeric representations of abdominal shapes with point-wise
correspondence to a template are further important for quantitative and
statistical analyses thereof. Recently, template-based surface extraction
methods have shown promising advances for direct mesh reconstruction from
volumetric scans. However, the generalization of these deep learning-based
approaches to different organs and datasets, a crucial property for deployment
in clinical environments, has not yet been assessed. We close this gap and
employ template-based mesh reconstruction methods for joint liver, kidney,
pancreas, and spleen segmentation. Our experiments on manually annotated CT and
MRI data reveal limited generalization capabilities of previous methods to
organs of different geometry and weak performance on small datasets. We
alleviate these issues with a novel deep diffeomorphic mesh-deformation
architecture and an improved training scheme. The resulting method, UNetFlow,
generalizes well to all four organs and can be easily fine-tuned on new data.
Moreover, we propose a simple registration-based post-processing that aligns
voxel and mesh outputs to boost segmentation accuracy.
- Abstract(参考訳): CTとMRIによる腹部臓器の分節は,手術計画とコンピュータ支援ナビゲーションシステムにとって必須の要件である。
腹部臓器の形状,大きさ,位置の多様性が高いため,困難である。
テンプレートに対する点対応の腹部形状の3次元数値表現は、その定量的および統計的解析においてさらに重要である。
近年,テンプレートベースの表面抽出法は,体積走査によるメッシュ再構築に期待できる進歩を見せている。
しかし, 様々な臓器やデータセットに対する深層学習に基づくアプローチの一般化は, 臨床環境への展開にとって重要な要素であり, まだ評価されていない。
このギャップを埋めて, 肝臓, 腎臓, 膵臓, 脾臓分節に対するテンプレートベースのメッシュ再構成法を応用した。
手動注記CTおよびMRIデータを用いた実験により,従来の手法を異なる形状のオルガンに限定的に一般化し,小さなデータセット上での弱い性能を示すことができた。
我々はこれらの問題を、新しい微分型メッシュデフォーメーションアーキテクチャと改善されたトレーニングスキームで緩和する。
結果として得られたUNetFlowは4つの器官すべてによく当てはまり、新しいデータに基づいて簡単に微調整できる。
さらに,ボクセルとメッシュの出力を整列させてセグメンテーション精度を高める,単純な登録ベースの後処理を提案する。
関連論文リスト
- Teaching AI the Anatomy Behind the Scan: Addressing Anatomical Flaws in Medical Image Segmentation with Learnable Prior [34.54360931760496]
臓器の数、形状、相対的な位置などの重要な解剖学的特徴は、堅牢な多臓器分割モデルの構築に不可欠である。
我々は Anatomy-Informed Network (AIC-Net) と呼ばれる新しいアーキテクチャを導入する。
AIC-Netは、患者固有の解剖学に適応できる「解剖学的事前」と呼ばれる学習可能な入力を組み込んでいる。
論文 参考訳(メタデータ) (2024-03-27T10:46:24Z) - ReshapeIT: Reliable Shape Interaction with Implicit Template for Anatomical Structure Reconstruction [59.971808117043366]
ReShapeITは、同じカテゴリ内で共有される暗黙のテンプレートフィールドを持つ解剖学的構造を表す。
これにより、インスタンス形状とテンプレート形状との対応性の制約を強化することにより、暗黙テンプレートフィールドが有効なテンプレートを生成する。
テンプレートインタラクションモジュールは、有効なテンプレートシェイプとインスタンスワイドの潜在コードとを相互作用することで、目に見えないシェイプを再構築するために導入される。
論文 参考訳(メタデータ) (2023-12-11T07:09:32Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
変性性脊椎疾患は高齢者に多い。
骨粗しょう性骨折やその他の変性変形性骨折のタイムリーな診断は、重度の腰痛や障害のリスクを軽減するための前向きな処置を促進する。
本研究では,脊椎動物に対する形状自動エンコーダの使用について検討する。
論文 参考訳(メタデータ) (2023-12-08T18:11:22Z) - AG-CRC: Anatomy-Guided Colorectal Cancer Segmentation in CT with
Imperfect Anatomical Knowledge [9.961742312147674]
自動生成臓器マスクを利用する新しい解剖ガイドセグメンテーションフレームワークを開発した。
提案手法を2つのCRCセグメンテーションデータセット上で広範囲に評価する。
論文 参考訳(メタデータ) (2023-10-07T03:22:06Z) - S3M: Scalable Statistical Shape Modeling through Unsupervised
Correspondences [91.48841778012782]
本研究では,集団解剖学における局所的および大域的形状構造を同時に学習するための教師なし手法を提案する。
我々のパイプラインは、ベースライン法と比較して、SSMの教師なし対応推定を大幅に改善する。
我々の手法は、ノイズの多いニューラルネットワーク予測から学ぶのに十分堅牢であり、より大きな患者にSSMを拡張できる可能性がある。
論文 参考訳(メタデータ) (2023-04-15T09:39:52Z) - Orientation-Shared Convolution Representation for CT Metal Artifact
Learning [63.67718355820655]
X線CT(CT)スキャン中、患者を乗せた金属インプラントは、しばしば有害なアーティファクトに繋がる。
既存のディープラーニングベースの手法は、有望な再構築性能を得た。
本稿では,人工物の物理的事前構造に適応するために,配向型畳み込み表現戦略を提案する。
論文 参考訳(メタデータ) (2022-12-26T13:56:12Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Unsupervised Domain Adaptation through Shape Modeling for Medical Image
Segmentation [23.045760366698634]
医用画像のセグメンテーションを支援するために, 形状を明示的にモデル化し, 利用することを目的としている。
従来の方法では、特定の臓器の形状の分布を学習するための変分オートエンコーダ(VAE)モデルが提案されていた。
本研究では,教師/学生の学習パラダイムの下で,擬似的損失とVAE再構成損失に基づく教師なしドメイン適応パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-06T09:16:42Z) - Body Part Regression for CT Images [0.0]
CTボリュームの自己教師付き身体部分回帰モデルを開発し、異種CT研究の収集に基づいて訓練した。
本研究は, このアルゴリズムが医療モデルの医院への堅牢かつ信頼性の高い移行にどのように貢献するかを示す。
論文 参考訳(メタデータ) (2021-10-18T10:03:42Z) - Contour Transformer Network for One-shot Segmentation of Anatomical
Structures [26.599337546171732]
本稿では,自然に組み込まれたループ機構を備えたワンショット解剖分類手法であるContour Transformer Network(CTN)を提案する。
4つの解剖学のセグメンテーションタスクにおいて、我々のワンショット学習法が非学習的手法を著しく上回っていることを示す。
最小限のHuman-in-the-loop編集フィードバックにより、セグメンテーション性能は、完全に教師されたメソッドを超えるようにさらに改善される。
論文 参考訳(メタデータ) (2020-12-02T19:42:18Z) - Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to
Unseen Domains [68.73614619875814]
前立腺MRIのセグメント化におけるモデル一般化を改善するために,新しい形状認識メタラーニング手法を提案する。
実験結果から,本手法は未確認領域の6つの設定すべてにおいて,最先端の一般化手法を一貫して上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2020-07-04T07:56:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。