論文の概要: Probabilistic Wind Power Forecasting via Non-Stationary Gaussian Processes
- arxiv url: http://arxiv.org/abs/2505.09026v1
- Date: Tue, 13 May 2025 23:46:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-15 21:44:09.32633
- Title: Probabilistic Wind Power Forecasting via Non-Stationary Gaussian Processes
- Title(参考訳): 非定常ガウス過程による確率的風力発電予測
- Authors: Domniki Ladopoulou, Dat Minh Hong, Petros Dellaportas,
- Abstract要約: 一般化されたスペクトル混合カーネルを組み込んだ非定常GPフレームワークを提案する。
実世界のSCADAデータを用いて提案モデルの性能を評価する。
その結果,風力予測における非定常性のモデル化の必要性が浮き彫りになった。
- 参考スコア(独自算出の注目度): 4.956709222278242
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate probabilistic forecasting of wind power is essential for maintaining grid stability and enabling efficient integration of renewable energy sources. Gaussian Process (GP) models offer a principled framework for quantifying uncertainty; however, conventional approaches rely on stationary kernels, which are inadequate for modeling the inherently non-stationary nature of wind speed and power output. We propose a non-stationary GP framework that incorporates the generalized spectral mixture (GSM) kernel, enabling the model to capture time-varying patterns and heteroscedastic behaviors in wind speed and wind power data. We evaluate the performance of the proposed model on real-world SCADA data across short\mbox{-,} medium-, and long-term forecasting horizons. Compared to standard radial basis function and spectral mixture kernels, the GSM-based model outperforms, particularly in short-term forecasts. These results highlight the necessity of modeling non-stationarity in wind power forecasting and demonstrate the practical value of non-stationary GP models in operational settings.
- Abstract(参考訳): 風力発電の正確な確率予測は、グリッド安定性を維持し、再生可能エネルギー源の効率的な統合を可能にするために不可欠である。
ガウス過程(GP)モデルは不確実性を定量化するための原則的枠組みを提供するが、従来の手法では風速と出力の本質的に静止しない性質をモデル化するには不十分な定常カーネルに依存していた。
本稿では, 一般化スペクトル混合(GSM)カーネルを組み込んだ非定常GPフレームワークを提案する。
我々は,提案モデルの性能を,ショート・ムボックス・{-,}中・長期予測地平線をまたいだ実世界のSCADAデータ上で評価する。
標準ラジアル基底関数やスペクトル混合カーネルと比較すると、GSMベースのモデルは特に短期予測において優れる。
これらの結果は、風力発電予測における非定常性をモデル化することの必要性を強調し、運用環境における非定常GPモデルの実用的価値を示す。
関連論文リスト
- Integrating Physics and Data-Driven Approaches: An Explainable and Uncertainty-Aware Hybrid Model for Wind Turbine Power Prediction [1.1270209626877075]
風力エネルギーセクターの急速な成長は、タービンの運転を最適化する緊急の必要性を浮き彫りにしている。
伝統的な経験的モデルと物理学に基づくモデルは、風速に基づく発電の近似予測を提供する。
データ駆動機械学習手法は、風力タービンモデリングを改善するための有望な道を示す。
論文 参考訳(メタデータ) (2025-02-11T08:16:48Z) - Enhanced Photovoltaic Power Forecasting: An iTransformer and LSTM-Based Model Integrating Temporal and Covariate Interactions [16.705621552594643]
既存のモデルは、しばしばターゲット変数と共変量の間の複雑な関係を捉えるのに苦労する。
対象変数からの特徴抽出にiTransformerを利用する新しいモデルアーキテクチャを提案する。
クロスアテンション機構は両方のモデルの出力を融合するために統合され、続いてコルモゴロフ・アルノルドネットワークマッピングが続く。
その結果, PV発電の季節変動を効果的に把握し, 予測精度を向上することが示唆された。
論文 参考訳(メタデータ) (2024-12-03T09:16:13Z) - Weather-Informed Probabilistic Forecasting and Scenario Generation in Power Systems [15.393565192962482]
再生可能エネルギー源の電力グリッドへの統合は、その本質性と不確実性のために大きな課題を呈している。
本稿では,高次元環境下での日頭予測と風のシナリオ生成のための確率予測とガウスコプラを組み合わせる手法を提案する。
論文 参考訳(メタデータ) (2024-09-11T21:44:59Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - Volatility Based Kernels and Moving Average Means for Accurate
Forecasting with Gaussian Processes [36.712632126776285]
本稿では, ボラティリティモデルのクラスを, 特殊共分散関数を持つ階層型ガウス過程(GP)モデルとして再キャストする方法を示す。
このフレームワーク内では、よく研究されたドメインからインスピレーションを得て、ストックおよび風速予測においてベースラインを著しく上回る新しいモデルのVoltとMagpieを導入する。
論文 参考訳(メタデータ) (2022-07-13T23:02:54Z) - An Energy-Based Prior for Generative Saliency [62.79775297611203]
本稿では,情報的エネルギーベースモデルを事前分布として採用する,新たな生成正当性予測フレームワークを提案する。
生成サリエンシモデルを用いて,画像から画素単位の不確実性マップを得ることができ,サリエンシ予測におけるモデル信頼度を示す。
実験結果から, エネルギーベース先行モデルを用いた生成塩分率モデルでは, 精度の高い塩分率予測だけでなく, 人間の知覚と整合した信頼性の高い不確実性マップを実現できることが示された。
論文 参考訳(メタデータ) (2022-04-19T10:51:00Z) - Physics-Informed Gaussian Process Regression for Probabilistic States
Estimation and Forecasting in Power Grids [67.72249211312723]
電力グリッドの効率的な運転にはリアルタイム状態推定と予測が不可欠である。
PhI-GPRは3世代電力系統の位相角,角速度,風力の予測と推定に使用される。
提案手法は観測された状態と観測されていない状態の両方を正確に予測し,推定することができることを示す。
論文 参考訳(メタデータ) (2020-10-09T14:18:31Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。