論文の概要: AdaFortiTran: An Adaptive Transformer Model for Robust OFDM Channel Estimation
- arxiv url: http://arxiv.org/abs/2505.09076v1
- Date: Wed, 14 May 2025 02:22:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-15 21:44:09.349108
- Title: AdaFortiTran: An Adaptive Transformer Model for Robust OFDM Channel Estimation
- Title(参考訳): AdaFortiTran:ロバストODMチャネル推定のための適応変換器モデル
- Authors: Berkay Guler, Hamid Jafarkhani,
- Abstract要約: 本稿では,アダフォーティトラン(Adaptive Fortified Transformer, AdaFortiTran)を提案する。
AdaFortiTranは最先端モデルと比較して平均2乗誤差(MSE)を最大6dB削減する。
- 参考スコア(独自算出の注目度): 22.40154714677385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models for channel estimation in Orthogonal Frequency Division Multiplexing (OFDM) systems often suffer from performance degradation under fast-fading channels and low-SNR scenarios. To address these limitations, we introduce the Adaptive Fortified Transformer (AdaFortiTran), a novel model specifically designed to enhance channel estimation in challenging environments. Our approach employs convolutional layers that exploit locality bias to capture strong correlations between neighboring channel elements, combined with a transformer encoder that applies the global Attention mechanism to channel patches. This approach effectively models both long-range dependencies and spectro-temporal interactions within single OFDM frames. We further augment the model's adaptability by integrating nonlinear representations of available channel statistics SNR, delay spread, and Doppler shift as priors. A residual connection is employed to merge global features from the transformer with local features from early convolutional processing, followed by final convolutional layers to refine the hierarchical channel representation. Despite its compact architecture, AdaFortiTran achieves up to 6 dB reduction in mean squared error (MSE) compared to state-of-the-art models. Tested across a wide range of Doppler shifts (200-1000 Hz), SNRs (0 to 25 dB), and delay spreads (50-300 ns), it demonstrates superior robustness in high-mobility environments.
- Abstract(参考訳): 直交周波数分割多重化(OFDM)システムにおけるチャネル推定のためのディープラーニングモデルは、高速フェーディングチャネルと低SNRシナリオ下での性能劣化に悩まされることが多い。
これらの制約に対処するため,困難環境下でのチャネル推定を改善するために設計された新しいモデルであるAdaptive Fortified Transformer (AdaFortiTran)を導入する。
提案手法では,局所性バイアスを利用した畳み込み層を用いて,隣接するチャネル要素間の強い相関関係を捉えるとともに,グローバルアテンション機構をチャネルパッチに適用するトランスフォーマーエンコーダを組み合わせる。
このアプローチは、単一OFDMフレーム内の長距離依存性と分光時間相互作用の両方を効果的にモデル化する。
さらに、利用可能なチャネル統計量SNRの非線形表現、遅延拡散、ドップラーシフトを事前として統合することにより、モデルの適応性をさらに向上する。
変換器からグローバルな特徴を初期畳み込み処理から局所的な特徴にマージし、続いて最終畳み込み層を用いて階層的なチャネル表現を洗練させる。
コンパクトなアーキテクチャにもかかわらず、AdaFortiTranは最先端モデルと比較して平均2乗誤差(MSE)を最大6dB削減できる。
広い範囲のドップラーシフト(200-1000Hz)、SNR(0-25dB)、遅延拡散(50-300ns)で試験され、高移動環境において優れた堅牢性を示す。
関連論文リスト
- SING: Semantic Image Communications using Null-Space and INN-Guided Diffusion Models [52.40011613324083]
近年, 無線画像伝送において, 共用音源チャネル符号化システム (DeepJSCC) が顕著な性能を発揮している。
既存の手法では、送信された画像とレシーバーの再構成されたバージョンとの間の歪みを最小限に抑えることに重点を置いており、しばしば知覚的品質を見落としている。
逆問題として,破損した再構成画像から高品質な画像の復元を定式化する新しいフレームワークであるSINGを提案する。
論文 参考訳(メタデータ) (2025-03-16T12:32:11Z) - TCAQ-DM: Timestep-Channel Adaptive Quantization for Diffusion Models [49.65286242048452]
拡散モデル(TCAQ-DM)のためのタイムステップ・チャネル適応量子化法を提案する。
提案手法は,ほとんどの場合,最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2024-12-21T16:57:54Z) - A Hybrid Transformer-Mamba Network for Single Image Deraining [70.64069487982916]
既存のデラリング変換器では、固定レンジウィンドウやチャネル次元に沿って自己アテンション機構を採用している。
本稿では,多分岐型トランスフォーマー・マンバネットワーク(Transformer-Mamba Network,TransMamba Network,Transformer-Mamba Network)を提案する。
論文 参考訳(メタデータ) (2024-08-31T10:03:19Z) - Diffusion-Driven Semantic Communication for Generative Models with Bandwidth Constraints [27.049330099874396]
本稿では,帯域制限付き生成モデルのための,高度なVAEベースの圧縮を用いた拡散駆動型セマンティック通信フレームワークを提案する。
実験の結果,ピーク信号対雑音比 (PSNR) などの画素レベルの指標と,LPIPS (Learning Perceptual Image patch similarity) のような意味的指標が大幅に改善された。
論文 参考訳(メタデータ) (2024-07-26T02:34:25Z) - Diffusion Models for Accurate Channel Distribution Generation [19.80498913496519]
強力な生成モデルはチャネル分布を正確に学習することができる。
これにより、チャネルの物理的測定の繰り返しコストを削減できる。
結果として得られる差別化チャネルモデルは、勾配ベースの最適化を可能にすることにより、ニューラルエンコーダのトレーニングをサポートする。
論文 参考訳(メタデータ) (2023-09-19T10:35:54Z) - An ML-assisted OTFS vs. OFDM adaptable modem [1.8492669447784602]
OTFSおよびOFDM波形は、レガシーアーキテクチャの再利用、レシーバ設計の単純さ、低複雑さ検出の利点を享受する。
本稿では,送信機におけるOTFSまたはOFDM信号処理チェーンと受信機とを切り替えて,平均二乗誤差(MSE)性能を最適化するディープニューラルネットワーク(DNN)に基づく適応方式を提案する。
論文 参考訳(メタデータ) (2023-09-04T02:33:44Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
本稿では,CSI行列内の固有周波数領域相関を明らかにするエンコーダデコーダに基づくネットワークを提案する。
エンコーダ・デコーダネットワーク全体がチャネル圧縮に使用される。
提案手法は,共同作業における現状のチャネル推定およびフィードバック技術より優れる。
論文 参考訳(メタデータ) (2023-06-08T06:15:17Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
本稿では,ミリ波(mmWave)システムのモデル駆動深層学習(MDDL)に基づくチャネル推定とフィードバック方式を提案する。
無線周波数(RF)鎖の限られた数から高次元チャネルを推定するためのアップリンクパイロットオーバーヘッドを低減するために,位相シフトネットワークとチャネル推定器を自動エンコーダとして共同で訓練することを提案する。
MDDLに基づくチャネル推定とフィードバック方式は,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-22T13:34:53Z) - Harnessing Wireless Channels for Scalable and Privacy-Preserving
Federated Learning [56.94644428312295]
無線接続は、フェデレートラーニング(FL)の実現に有効である
Channel randomnessperturbs 各ワーカはモデル更新をインバージョンし、複数のワーカはバンド幅に大きな干渉を発生させる。
A-FADMMでは、すべてのワーカーがモデル更新をアナログ送信を介して単一のチャンネルを使用してパラメータサーバにアップロードする。
これは通信帯域幅を節約するだけでなく、各ワーカーの正確なモデル更新軌跡を任意の盗聴者から隠蔽する。
論文 参考訳(メタデータ) (2020-07-03T16:31:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。