A Comparative Review of RNA Language Models
- URL: http://arxiv.org/abs/2505.09087v1
- Date: Wed, 14 May 2025 02:40:13 GMT
- Title: A Comparative Review of RNA Language Models
- Authors: He Wang, Yikun Zhang, Jie Chen, Jian Zhan, Yaoqi Zhou,
- Abstract summary: We divided RNA LMs into three classes (pretrained on multiple RNA types, specific-purpose RNAs, and LMs that unify RNA with DNA or proteins or both)<n>We compared 13 RNA LMs along with 3 DNA and 1 protein LMs as controls in zero-shot prediction of RNA secondary structure and functional classification.<n>Results shows that the models doing well on secondary structure prediction often perform worse in function classification or vice versa, suggesting that more balanced unsupervised training is needed.
- Score: 12.899321790353238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given usefulness of protein language models (LMs) in structure and functional inference, RNA LMs have received increased attentions in the last few years. However, these RNA models are often not compared against the same standard. Here, we divided RNA LMs into three classes (pretrained on multiple RNA types (especially noncoding RNAs), specific-purpose RNAs, and LMs that unify RNA with DNA or proteins or both) and compared 13 RNA LMs along with 3 DNA and 1 protein LMs as controls in zero-shot prediction of RNA secondary structure and functional classification. Results shows that the models doing well on secondary structure prediction often perform worse in function classification or vice versa, suggesting that more balanced unsupervised training is needed.
Related papers
- RNA-GPT: Multimodal Generative System for RNA Sequence Understanding [6.611255836269348]
RNAs are essential molecules that carry genetic information vital for life.
Despite this importance, RNA research is often hindered by the vast literature available on the topic.
We introduce RNA-GPT, a multi-modal RNA chat model designed to simplify RNA discovery.
arXiv Detail & Related papers (2024-10-29T06:19:56Z) - Comprehensive benchmarking of large language models for RNA secondary structure prediction [0.0]
RNA-LLM uses large datasets of RNA sequences to learn, in a self-supervised way, how to represent each RNA base with a semantically rich numerical vector.<n>Among them, predicting the secondary structure is a fundamental task for uncovering RNA functional mechanisms.<n>We present a comprehensive experimental analysis of several pre-trained RNA-LLM, comparing them for the RNA secondary structure prediction task in a unified deep learning framework.
arXiv Detail & Related papers (2024-10-21T17:12:06Z) - RNA-FrameFlow: Flow Matching for de novo 3D RNA Backbone Design [41.80588259094431]
We introduce RNA-FrameFlow, the first generative model for 3D RNA backbone design.<n>We formulate RNA structures as a set of rigid-body frames and associated loss functions.<n>To tackle the lack of diversity in 3D RNA datasets, we explore training with structural clustering and cropping augmentations.
arXiv Detail & Related papers (2024-06-19T21:06:44Z) - BEACON: Benchmark for Comprehensive RNA Tasks and Language Models [60.02663015002029]
We introduce the first comprehensive RNA benchmark BEACON (textbfBEnchmtextbfArk for textbfCOmprehensive RtextbfNA Task and Language Models).<n>First, BEACON comprises 13 distinct tasks derived from extensive previous work covering structural analysis, functional studies, and engineering applications.<n>Second, we examine a range of models, including traditional approaches like CNNs, as well as advanced RNA foundation models based on language models, offering valuable insights into the task-specific performances of these models.<n>Third, we investigate the vital RNA language model components
arXiv Detail & Related papers (2024-06-14T19:39:19Z) - RiNALMo: General-Purpose RNA Language Models Can Generalize Well on Structure Prediction Tasks [1.1764999317813143]
We introduce RiboNucleic Acid Language Model (RiNALMo) to unveil the hidden code of RNA.
RiNALMo is the largest RNA language model to date, with 650M parameters pre-trained on 36M non-coding RNA sequences.
arXiv Detail & Related papers (2024-02-29T14:50:58Z) - scHyena: Foundation Model for Full-Length Single-Cell RNA-Seq Analysis
in Brain [46.39828178736219]
We introduce scHyena, a foundation model designed to address these challenges and enhance the accuracy of scRNA-seq analysis in the brain.
scHyena is equipped with a linear adaptor layer, the positional encoding via gene-embedding, and a bidirectional Hyena operator.
This enables us to process full-length scRNA-seq data without losing any information from the raw data.
arXiv Detail & Related papers (2023-10-04T10:30:08Z) - Knowledge from Large-Scale Protein Contact Prediction Models Can Be
Transferred to the Data-Scarce RNA Contact Prediction Task [40.051834115537474]
We find that a protein-coevolution Transformer-based deep neural network can be transferred to the RNA contact prediction task.
Experiments confirm that RNA contact prediction through transfer learning is greatly improved.
Our findings indicate that the learned structural patterns of proteins can be transferred to RNAs, opening up potential new avenues for research.
arXiv Detail & Related papers (2023-02-13T06:00:56Z) - RDesign: Hierarchical Data-efficient Representation Learning for
Tertiary Structure-based RNA Design [65.41144149958208]
This study aims to systematically construct a data-driven RNA design pipeline.
We crafted a benchmark dataset and designed a comprehensive structural modeling approach to represent the complex RNA tertiary structure.
We incorporated extracted secondary structures with base pairs as prior knowledge to facilitate the RNA design process.
arXiv Detail & Related papers (2023-01-25T17:19:49Z) - Accurate RNA 3D structure prediction using a language model-based deep learning approach [50.193512039121984]
RhoFold+ is an RNA language model-based deep learning method that accurately predicts 3D structures of single-chain RNAs from sequences.<n>RhoFold+ offers a fully automated end-to-end pipeline for RNA 3D structure prediction.
arXiv Detail & Related papers (2022-07-04T17:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.