Imitation Learning for Adaptive Control of a Virtual Soft Exoglove
- URL: http://arxiv.org/abs/2505.09099v1
- Date: Wed, 14 May 2025 03:09:21 GMT
- Title: Imitation Learning for Adaptive Control of a Virtual Soft Exoglove
- Authors: Shirui Lyu, Vittorio Caggiano, Matteo Leonetti, Dario Farina, Letizia Gionfrida,
- Abstract summary: We propose a customized wearable robotic controller that is able to address specific muscle deficits and to provide compensation for hand-object manipulation tasks.<n>Video data of a same subject performing human grasping tasks is used to train a manipulation model through learning from demonstration.<n>This manipulation model is subsequently fine-tuned to perform object-specific interaction tasks.<n>The muscle forces in the musculoskeletal manipulation model are then weakened to simulate neurological motor impairments, which are later compensated by the actuation of a virtual wearable robotics glove.
- Score: 3.3030080038744947
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The use of wearable robots has been widely adopted in rehabilitation training for patients with hand motor impairments. However, the uniqueness of patients' muscle loss is often overlooked. Leveraging reinforcement learning and a biologically accurate musculoskeletal model in simulation, we propose a customized wearable robotic controller that is able to address specific muscle deficits and to provide compensation for hand-object manipulation tasks. Video data of a same subject performing human grasping tasks is used to train a manipulation model through learning from demonstration. This manipulation model is subsequently fine-tuned to perform object-specific interaction tasks. The muscle forces in the musculoskeletal manipulation model are then weakened to simulate neurological motor impairments, which are later compensated by the actuation of a virtual wearable robotics glove. Results shows that integrating the virtual wearable robotic glove provides shared assistance to support the hand manipulator with weakened muscle forces. The learned exoglove controller achieved an average of 90.5\% of the original manipulation proficiency.
Related papers
- Towards Biosignals-Free Autonomous Prosthetic Hand Control via Imitation Learning [1.072044330361478]
This study aims to develop a fully autonomous control system for a prosthetic hand.<n>By placing the hand near an object, the system will automatically execute grasping actions with a proper grip force.<n>To release the object being grasped, just naturally place the object close to the table and the system will automatically open the hand.
arXiv Detail & Related papers (2025-06-10T13:44:08Z) - Reinforcement learning-based motion imitation for physiologically plausible musculoskeletal motor control [47.423243831156285]
We present a model-free motion imitation framework (KINESIS) to advance the understanding of muscle-based motor control.<n>We demonstrate that KINESIS achieves strong imitation performance on 1.9 hours of motion capture data.<n>KINESIS generates muscle activity patterns that correlate well with human EMG activity.
arXiv Detail & Related papers (2025-03-18T18:37:49Z) - AI-Powered Camera and Sensors for the Rehabilitation Hand Exoskeleton [0.393259574660092]
This project presents a vision-enabled rehabilitation hand exoskeleton to assist disabled persons in their hand movements.
The design goal was to create an accessible tool to help with a simple interface requiring no training.
arXiv Detail & Related papers (2024-08-09T04:47:37Z) - Human-Agent Joint Learning for Efficient Robot Manipulation Skill Acquisition [48.65867987106428]
We introduce a novel system for joint learning between human operators and robots.
It enables human operators to share control of a robot end-effector with a learned assistive agent.
It reduces the need for human adaptation while ensuring the collected data is of sufficient quality for downstream tasks.
arXiv Detail & Related papers (2024-06-29T03:37:29Z) - Reinforcement Learning-Based Bionic Reflex Control for Anthropomorphic
Robotic Grasping exploiting Domain Randomization [0.4999814847776098]
We introduce an innovative bionic reflex control pipeline, leveraging reinforcement learning (RL)
Our proposed bionic reflex controller has been designed and tested on an anthropomorphic hand.
We anticipate that this autonomous, RL-based bionic reflex controller will catalyze the development of dependable and highly efficient robotic and prosthetic hands.
arXiv Detail & Related papers (2023-12-08T13:04:41Z) - Reconfigurable Data Glove for Reconstructing Physical and Virtual Grasps [100.72245315180433]
We present a reconfigurable data glove design to capture different modes of human hand-object interactions.
The glove operates in three modes for various downstream tasks with distinct features.
We evaluate the system's three modes by (i) recording hand gestures and associated forces, (ii) improving manipulation fluency in VR, and (iii) producing realistic simulation effects of various tool uses.
arXiv Detail & Related papers (2023-01-14T05:35:50Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
We describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks.
Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples.
experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world.
arXiv Detail & Related papers (2022-12-19T22:50:40Z) - I am Robot: Neuromuscular Reinforcement Learning to Actuate Human Limbs
through Functional Electrical Stimulation [5.066245628617513]
Functional Electrical Stimulation (FES) is an established technique for contracting muscles by stimulating the skin above a muscle to induce its contraction.
We present our Deep Reinforcement Learning approach to the control of human muscles with FES, using a recurrent neural network for dynamic state representation.
Our results show that our controller can learn to manipulate human muscles, applying appropriate levels of stimulation to achieve the given tasks while compensating for advancing muscle fatigue which arises throughout the tasks.
arXiv Detail & Related papers (2021-03-09T10:58:51Z) - Online Body Schema Adaptation through Cost-Sensitive Active Learning [63.84207660737483]
The work was implemented in a simulation environment, using the 7DoF arm of the iCub robot simulator.
A cost-sensitive active learning approach is used to select optimal joint configurations.
The results show cost-sensitive active learning has similar accuracy to the standard active learning approach, while reducing in about half the executed movement.
arXiv Detail & Related papers (2021-01-26T16:01:02Z) - Physics-Based Dexterous Manipulations with Estimated Hand Poses and
Residual Reinforcement Learning [52.37106940303246]
We learn a model that maps noisy input hand poses to target virtual poses.
The agent is trained in a residual setting by using a model-free hybrid RL+IL approach.
We test our framework in two applications that use hand pose estimates for dexterous manipulations: hand-object interactions in VR and hand-object motion reconstruction in-the-wild.
arXiv Detail & Related papers (2020-08-07T17:34:28Z) - Reinforcement Learning of Musculoskeletal Control from Functional
Simulations [3.94716580540538]
In this work, a deep reinforcement learning (DRL) based inverse dynamics controller is trained to control muscle activations of a biomechanical model of the human shoulder.
Results are presented for a single-axis motion control of shoulder abduction for the task of following randomly generated angular trajectories.
arXiv Detail & Related papers (2020-07-13T20:20:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.