A Standardized Benchmark Set of Clustering Problem Instances for Comparing Black-Box Optimizers
- URL: http://arxiv.org/abs/2505.09233v1
- Date: Wed, 14 May 2025 09:16:19 GMT
- Title: A Standardized Benchmark Set of Clustering Problem Instances for Comparing Black-Box Optimizers
- Authors: Diederick Vermetten, Catalin-Viorel Dinu, Marcus Gallagher,
- Abstract summary: We present a standardized benchmark suite for the evaluation of continuous black-box optimization algorithms, based on data clustering problems.<n>Our benchmark set is open-source and integrated with the IOHprofiler benchmarking framework to encourage its use in future research.
- Score: 1.8133635942659796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One key challenge in optimization is the selection of a suitable set of benchmark problems. A common goal is to find functions which are representative of a class of real-world optimization problems in order to ensure findings on the benchmarks will translate to relevant problem domains. While some problem characteristics are well-covered by popular benchmarking suites, others are often overlooked. One example of such a problem characteristic is permutation invariance, where the search space consists of a set of symmetrical search regions. This type of problem occurs e.g. when a set of solutions has to be found, but the ordering within this set does not matter. The data clustering problem, often seen in machine learning contexts, is a clear example of such an optimization landscape, and has thus been proposed as a base from which optimization benchmarks can be created. In addition to the symmetry aspect, these clustering problems also contain potential regions of neutrality, which can provide an additional challenge to optimization algorithms. In this paper, we present a standardized benchmark suite for the evaluation of continuous black-box optimization algorithms, based on data clustering problems. To gain insight into the diversity of the benchmark set, both internally and in comparison to existing suites, we perform a benchmarking study of a set of modular CMA-ES configurations, as well as an analysis using exploratory landscape analysis. Our benchmark set is open-source and integrated with the IOHprofiler benchmarking framework to encourage its use in future research.
Related papers
- Training Greedy Policy for Proposal Batch Selection in Expensive Multi-Objective Combinatorial Optimization [52.80408805368928]
We introduce a novel greedy-style subset selection algorithm for batch acquisition.
Our experiments on the red fluorescent proteins show that our proposed method achieves the baseline performance in 1.69x fewer queries.
arXiv Detail & Related papers (2024-06-21T05:57:08Z) - Exploratory Landscape Analysis for Mixed-Variable Problems [0.7252027234425334]
We provide the means to compute exploratory landscape features for mixed-variable problems where the decision space is a mixture of continuous, binary, integer, and categorical variables.
To further highlight their merit for practical applications, we design and conduct an automated algorithm selection study.
Our trained algorithm selector is able to close the gap between the single best and the virtual best solver by 57.5% over all benchmark problems.
arXiv Detail & Related papers (2024-02-26T10:19:23Z) - Exploring the Algorithm-Dependent Generalization of AUPRC Optimization
with List Stability [107.65337427333064]
optimization of the Area Under the Precision-Recall Curve (AUPRC) is a crucial problem for machine learning.
In this work, we present the first trial in the single-dependent generalization of AUPRC optimization.
Experiments on three image retrieval datasets on speak to the effectiveness and soundness of our framework.
arXiv Detail & Related papers (2022-09-27T09:06:37Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - A unified surrogate-based scheme for black-box and preference-based
optimization [2.561649173827544]
We show that black-box and preference-based optimization problems are closely related and can be solved using the same family of approaches.
We propose the generalized Metric Response Surface (gMRS) algorithm, an optimization scheme that is a generalization of the popular MSRS framework.
arXiv Detail & Related papers (2022-02-03T08:47:54Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
We address the non- optimisation problem of finding a matrix on the Stiefel manifold that maximises a quadratic objective function.
We propose a simple yet effective sparsity-promoting algorithm for finding the dominant eigenspace matrix.
arXiv Detail & Related papers (2021-09-30T19:17:35Z) - A Complementarity Analysis of the COCO Benchmark Problems and
Artificially Generated Problems [0.0]
In this paper, one such single-objective continuous problem generation approach is analyzed and compared with the COCO benchmark problem set.
We show that such representations allow us to further explore the relations between the problems by applying visualization and correlation analysis techniques.
arXiv Detail & Related papers (2021-04-27T09:18:43Z) - On the Assessment of Benchmark Suites for Algorithm Comparison [7.501426386641256]
We show that most benchmark functions of BBOB suite have high difficulty levels (compared to the optimization algorithms) and low discrimination.
We discuss potential uses of IRT in benchmarking, including its use to improve the design of benchmark suites.
arXiv Detail & Related papers (2021-04-15T11:20:11Z) - Black-Box Optimization Revisited: Improving Algorithm Selection Wizards
through Massive Benchmarking [8.874754363200614]
Existing studies in black-box optimization for machine learning suffer from low generalizability.
We propose a benchmark suite, OptimSuite, which covers a broad range of black-box optimization problems.
ABBO achieves competitive performance on all benchmark suites.
arXiv Detail & Related papers (2020-10-08T14:17:30Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.