High-Fidelity Control of a Strongly Coupled Electro-Nuclear Spin-Photon Interface
- URL: http://arxiv.org/abs/2505.09267v1
- Date: Wed, 14 May 2025 10:36:22 GMT
- Title: High-Fidelity Control of a Strongly Coupled Electro-Nuclear Spin-Photon Interface
- Authors: Isaac B. W. Harris, Ian Christen, Sofia M. Patomäki, Hamza Raniwala, Maxim Sirotin, Marco Colangelo, Kevin C. Chen, Carlos Errando-Herranz, David J. Starling, Ryan Murphy, Katia Shtyrkova, Owen Medeiros, Matthew E. Trusheim, Karl K. Berggren, P. Benjamin Dixon, Dirk Englund,
- Abstract summary: Group-IV color centers in diamond (SiV, GeV, and SnV) are promising candidates for long distance quantum networking.<n>Recent work has demonstrated state-of-the-art performance in spin-photon coupling and spin-spin entanglement.<n>We propose using the large hyperfine coupling of SnV-117 to operate the device at zero magnetic field in a regime where the memory is insensitive to optical excitation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Long distance quantum networking requires combining efficient spin-photon interfaces with long-lived local memories. Group-IV color centers in diamond (SiV, GeV, and SnV) are promising candidates for this application, containing an electronic spin-photon interface and dopant nuclear spin memory. Recent work has demonstrated state-of-the-art performance in spin-photon coupling and spin-spin entanglement. However, coupling between the electron and nuclear spins introduces a phase kickback during optical excitation that limits the utility of the nuclear memory. Here, we propose using the large hyperfine coupling of SnV-117 to operate the device at zero magnetic field in a regime where the memory is insensitive to optical excitation. We further demonstrate ground state spin control of a SnV-117 color center integrated in a photonic integrated circuit, showing 97.8% gate fidelity and 2.5 ms coherence time for the memory spin level. This shows the viability of the zero-field protocol for high fidelity operation, and lays the groundwork for building quantum network nodes with SnV-117 devices.
Related papers
- Strongly Coupled Spins of Silicon-Vacancy Centers Inside a Nanodiamond
with Sub-Megahertz Linewidth [43.06643088952006]
electron spin of a color center in diamond mediates interaction between a long-lived nuclear spin and a photon.
We demonstrate strong coupling of its electron spin, while the electron spin's decoherence rate remained below 1 MHz.
We furthermore demonstrate multi-spin coupling with the potential to establish registers of quantum memories in nanodiamonds.
arXiv Detail & Related papers (2023-12-14T14:17:35Z) - Spin-photon entanglement with direct photon emission in the telecom
C-band [0.0]
Solid-state quantum emitters in the telecom C-band are a promising platform for quantum communication applications.
We report the first demonstration of spin-photon entanglement in a solid-state system capable of direct emission into the telecom C-band.
arXiv Detail & Related papers (2023-10-25T18:53:42Z) - Microwave-based quantum control and coherence protection of tin-vacancy
spin qubits in a strain-tuned diamond membrane heterostructure [54.501132156894435]
Tin-vacancy center (SnV) in diamond is a promising spin-photon interface with desirable optical and spin properties at 1.7 K.
We introduce a new platform that overcomes these challenges - SnV centers in uniformly strained thin diamond membranes.
The presence of crystal strain suppresses temperature dependent dephasing processes, leading to a considerable improvement of the coherence time up to 223 $mu$s at 4 K.
arXiv Detail & Related papers (2023-07-21T21:40:21Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - A diamond nanophotonic interface with an optically accessible
deterministic electronuclear spin register [44.62475518267084]
We present a fibre-packaged nanophotonic diamond waveguide hosting a tin-vacancy centre with a spin-1/2 $117$Sn nucleus.
The interaction between the electronic and nuclear spins results in a signature 452(4) MHz hyperfine splitting.
This exceeds the natural optical linewidth by a factor of 16, enabling direct optical nuclear-spin initialisation.
We demonstrate a spin-gated single-photon nonlinearity with 11(1)% contrast in the absence of an external magnetic field.
arXiv Detail & Related papers (2023-05-30T10:30:07Z) - Room Temperature Fiber-Coupled single-photon devices based on Colloidal
Quantum Dots and SiV centers in Back Excited Nanoantennas [91.6474995587871]
Directionality is achieved with a hybrid metal-dielectric bullseye antenna.
Back-excitation is permitted by placement of the emitter at or in a sub-wavelength hole positioned at the bullseye center.
arXiv Detail & Related papers (2023-03-19T14:54:56Z) - Purcell enhancement of single-photon emitters in silicon [68.8204255655161]
Individual spins that are coupled to telecommunication photons offer unique promise for distributed quantum information processing.
We implement such an interface by integrating erbium dopants into a nanophotonic silicon resonator.
We observe optical Rabi oscillations and single-photon emission with a 78-fold Purcell enhancement.
arXiv Detail & Related papers (2023-01-18T19:38:38Z) - Multidimensional cluster states using a single spin-photon interface
coupled strongly to an intrinsic nuclear register [48.7576911714538]
Photonic cluster states are a powerful resource for measurement-based quantum computing and loss-tolerant quantum communication.
We propose the generation of multi-dimensional lattice cluster states using a single, efficient spin-photon interface coupled strongly to a nuclear register.
arXiv Detail & Related papers (2021-04-26T14:41:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.