How an unintended Side Effect of a Research Project led to Boosting the Power of UML
- URL: http://arxiv.org/abs/2505.09269v1
- Date: Wed, 14 May 2025 10:38:37 GMT
- Title: How an unintended Side Effect of a Research Project led to Boosting the Power of UML
- Authors: Ulrich Frank, Pierre Maier,
- Abstract summary: This paper describes the design, implementation and use of a new modeling tool.<n>It allows the integration of class diagrams and object diagrams as well as the execution of objects.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes the design, implementation and use of a new UML modeling tool that represents a significant advance over conventional tools. Among other things, it allows the integration of class diagrams and object diagrams as well as the execution of objects. This not only enables new software architectures characterized by the integration of software with corresponding object models, but is also ideal for use in teaching, as it provides students with a particularly stimulating learning experience. A special feature of the project is that it has emerged from a long-standing international research project, which is aimed at a comprehensive multi-level architecture. The project is therefore an example of how research can lead to valuable results that arise as a side effect of other work.
Related papers
- ToolACE-DEV: Self-Improving Tool Learning via Decomposition and EVolution [77.86222359025011]
We propose ToolACE-DEV, a self-improving framework for tool learning.<n>First, we decompose the tool-learning objective into sub-tasks that enhance basic tool-making and tool-using abilities.<n>We then introduce a self-evolving paradigm that allows lightweight models to self-improve, reducing reliance on advanced LLMs.
arXiv Detail & Related papers (2025-05-12T12:48:30Z) - ToolRL: Reward is All Tool Learning Needs [54.16305891389931]
Large Language Models (LLMs) often undergo supervised fine-tuning (SFT) to acquire tool use capabilities.<n>Recent advancements in reinforcement learning (RL) have demonstrated promising reasoning and generalization abilities.<n>We present the first comprehensive study on reward design for tool selection and application tasks within the RL paradigm.
arXiv Detail & Related papers (2025-04-16T21:45:32Z) - What is a Feature, Really? Toward a Unified Understanding Across SE Disciplines [0.7125007887148752]
In software engineering, the concept of a feature'' is inconsistently defined across disciplines such as requirements engineering (RE) and software product lines (SPL)<n>This paper proposes an empirical, data-driven approach to explore how features are described, implemented, and managed across real-world projects.
arXiv Detail & Related papers (2025-02-14T09:08:53Z) - ObjectRelator: Enabling Cross-View Object Relation Understanding in Ego-Centric and Exo-Centric Videos [105.40690994956667]
Ego-Exo Object Correspondence task aims to map objects across ego-centric and exo-centric views.<n>We introduce ObjectRelator, a novel method designed to tackle this task.
arXiv Detail & Related papers (2024-11-28T12:01:03Z) - Towards Completeness-Oriented Tool Retrieval for Large Language Models [60.733557487886635]
Real-world systems often incorporate a wide array of tools, making it impractical to input all tools into Large Language Models.
Existing tool retrieval methods primarily focus on semantic matching between user queries and tool descriptions.
We propose a novel modelagnostic COllaborative Learning-based Tool Retrieval approach, COLT, which captures not only the semantic similarities between user queries and tool descriptions but also takes into account the collaborative information of tools.
arXiv Detail & Related papers (2024-05-25T06:41:23Z) - Teaching MLOps in Higher Education through Project-Based Learning [7.294965109944707]
We present a project-based learning approach to teaching MLOps.
We examine the design of a course based on this approach.
We report on preliminary results from the first edition of the course.
arXiv Detail & Related papers (2023-02-02T12:22:30Z) - "Project smells" -- Experiences in Analysing the Software Quality of ML
Projects with mllint [6.0141405230309335]
We introduce the novel concept of project smells which consider deficits in project management as a more holistic perspective on software quality.
An open-source static analysis tool mllint was also implemented to help detect and mitigate these.
Our findings indicate a need for context-aware static analysis tools, that fit the needs of the project at its current stage of development.
arXiv Detail & Related papers (2022-01-20T15:52:24Z) - Designing Machine Learning Toolboxes: Concepts, Principles and Patterns [0.0]
We provide an overview of key patterns in the design of AI modeling toolboxes.
Our analysis can not only explain the design of existing toolboxes, but also guide the development of new ones.
arXiv Detail & Related papers (2021-01-13T08:55:15Z) - Unadversarial Examples: Designing Objects for Robust Vision [100.4627585672469]
We develop a framework that exploits the sensitivity of modern machine learning algorithms to input perturbations in order to design "robust objects"
We demonstrate the efficacy of the framework on a wide variety of vision-based tasks ranging from standard benchmarks to (in-simulation) robotics.
arXiv Detail & Related papers (2020-12-22T18:26:07Z) - Evaluating Mixed-Initiative Procedural Level Design Tools using a
Triple-Blind Mixed-Method User Study [0.0]
A tool which generates levels using interactive evolutionary optimisation was designed for this study.
The tool identifies level design patterns in an initial hand-designed map and uses that information to drive an interactive optimisation algorithm.
A rigorous user study was designed which compared the experiences of designers using the mixed-initiative tool to designers who were given a tool which provided completely random level suggestions.
arXiv Detail & Related papers (2020-05-15T11:40:53Z) - Look-into-Object: Self-supervised Structure Modeling for Object
Recognition [71.68524003173219]
We propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions.
We show the recognition backbone can be substantially enhanced for more robust representation learning.
Our approach achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft)
arXiv Detail & Related papers (2020-03-31T12:22:51Z) - A Unified Object Motion and Affinity Model for Online Multi-Object
Tracking [127.5229859255719]
We propose a novel MOT framework that unifies object motion and affinity model into a single network, named UMA.
UMA integrates single object tracking and metric learning into a unified triplet network by means of multi-task learning.
We equip our model with a task-specific attention module, which is used to boost task-aware feature learning.
arXiv Detail & Related papers (2020-03-25T09:36:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.