Predicting butterfly species presence from satellite imagery using soft contrastive regularisation
- URL: http://arxiv.org/abs/2505.09306v1
- Date: Wed, 14 May 2025 11:42:09 GMT
- Title: Predicting butterfly species presence from satellite imagery using soft contrastive regularisation
- Authors: Thijs L van der Plas, Stephen Law, Michael JO Pocock,
- Abstract summary: This paper presents a new data set for predicting butterfly species presence from satellite data in the United Kingdom.<n>We experimentally optimise a Resnet-based model to predict multi-species presence from 4-band satellite images.<n>We develop a soft, supervised contrastive regularisation loss that is tailored to probabilistic labels.
- Score: 1.0923877073891446
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The growing demand for scalable biodiversity monitoring methods has fuelled interest in remote sensing data, due to its widespread availability and extensive coverage. Traditionally, the application of remote sensing to biodiversity research has focused on mapping and monitoring habitats, but with increasing availability of large-scale citizen-science wildlife observation data, recent methods have started to explore predicting multi-species presence directly from satellite images. This paper presents a new data set for predicting butterfly species presence from satellite data in the United Kingdom. We experimentally optimise a Resnet-based model to predict multi-species presence from 4-band satellite images, and find that this model especially outperforms the mean rate baseline for locations with high species biodiversity. To improve performance, we develop a soft, supervised contrastive regularisation loss that is tailored to probabilistic labels (such as species-presence data), and demonstrate that this improves prediction accuracy. In summary, our new data set and contrastive regularisation method contribute to the open challenge of accurately predicting species biodiversity from remote sensing data, which is key for efficient biodiversity monitoring.
Related papers
- Open-Set Recognition of Novel Species in Biodiversity Monitoring [21.00825480154685]
We introduce Open-Insects, a fine-grained image recognition benchmark dataset for open-set recognition and out-of-distribution detection.<n>We evaluate a variety of open-set recognition algorithms, including post-hoc methods, training-time regularization, and training with auxiliary data.
arXiv Detail & Related papers (2025-03-03T16:04:46Z) - Few-shot Species Range Estimation [61.60698161072356]
Knowing where a particular species can or cannot be found on Earth is crucial for ecological research and conservation efforts.<n>We outline a new approach for few-shot species range estimation to address the challenge of accurately estimating the range of a species from limited data.<n>During inference, our model takes a set of spatial locations as input, along with optional metadata such as text or an image, and outputs a species encoding that can be used to predict the range of a previously unseen species in feed-forward manner.
arXiv Detail & Related papers (2025-02-20T19:13:29Z) - DivShift: Exploring Domain-Specific Distribution Shifts in Large-Scale, Volunteer-Collected Biodiversity Datasets [0.0]
Large-scale, volunteer-collected datasets of community-identified natural world imagery like iNaturalist have enabled marked performance gains for fine-grained visual classification of species using machine learning methods.<n>Here we introduce Diversity Shift, a framework for quantifying the effects of domain-specific distribution shifts on machine learning model performance.<n>To diagnose the performance effects of biases specific to volunteer-collected biodiversity data, we also introduce DivShift - North American West Coast (DivShift-NAWC), a curated dataset of almost 7.5 million iNaturalist images across the western coast of North America partitioned across five types of expert-verified bias.
arXiv Detail & Related papers (2024-10-17T23:56:30Z) - Combining Observational Data and Language for Species Range Estimation [63.65684199946094]
We propose a novel approach combining millions of citizen science species observations with textual descriptions from Wikipedia.<n>Our framework maps locations, species, and text descriptions into a common space, enabling zero-shot range estimation from textual descriptions.<n>Our approach also acts as a strong prior when combined with observational data, resulting in more accurate range estimation with less data.
arXiv Detail & Related papers (2024-10-14T17:22:55Z) - Predicting Species Occurrence Patterns from Partial Observations [21.009271008147785]
We introduce the problem of predicting species occurrence patterns given (a) satellite imagery, and (b) known information on the occurrence of other species.
To evaluate algorithms on this task, we introduce SatButterfly, a dataset of satellite images, environmental data and observational data for butterflies.
We propose a general model, R-Tran, for predicting species occurrence patterns that enables the use of partial observational data wherever found.
arXiv Detail & Related papers (2024-03-26T18:29:39Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
We present SatBird, a satellite dataset of locations in the USA with labels derived from presence-absence observation data from the citizen science database eBird.
We also provide a dataset in Kenya representing low-data regimes.
We benchmark a set of baselines on our dataset, including SOTA models for remote sensing tasks.
arXiv Detail & Related papers (2023-11-02T02:00:27Z) - Spatial Implicit Neural Representations for Global-Scale Species Mapping [72.92028508757281]
Given a set of locations where a species has been observed, the goal is to build a model to predict whether the species is present or absent at any location.
Traditional methods struggle to take advantage of emerging large-scale crowdsourced datasets.
We use Spatial Implicit Neural Representations (SINRs) to jointly estimate the geographical range of 47k species simultaneously.
arXiv Detail & Related papers (2023-06-05T03:36:01Z) - Bird Distribution Modelling using Remote Sensing and Citizen Science
data [31.375576105932442]
Climate change is a major driver of biodiversity loss.
There are significant knowledge gaps about the distribution of species.
We propose an approach leveraging computer vision to improve species distribution modelling.
arXiv Detail & Related papers (2023-05-01T20:27:11Z) - Label scarcity in biomedicine: Data-rich latent factor discovery
enhances phenotype prediction [102.23901690661916]
Low-dimensional embedding spaces can be derived from the UK Biobank population dataset to enhance data-scarce prediction of health indicators, lifestyle and demographic characteristics.
Performances gains from semisupervison approaches will probably become an important ingredient for various medical data science applications.
arXiv Detail & Related papers (2021-10-12T16:25:50Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
Time-consuming sorting and identification of taxa pose strong limitations on how many insect samples can be processed.
We propose to replace the standard manual approach of human expert-based sorting and identification with an automatic image-based technology.
We use state-of-the-art Resnet-50 and InceptionV3 CNNs for the classification task.
arXiv Detail & Related papers (2020-02-05T21:38:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.