Personalized Control for Lower Limb Prosthesis Using Kolmogorov-Arnold Networks
- URL: http://arxiv.org/abs/2505.09366v1
- Date: Wed, 14 May 2025 13:18:57 GMT
- Title: Personalized Control for Lower Limb Prosthesis Using Kolmogorov-Arnold Networks
- Authors: SeyedMojtaba Mohasel, Alireza Afzal Aghaei, Corey Pew,
- Abstract summary: This paper investigates the potential of learnable activation functions in Kolmogorov-Arnold Networks (KANs) for personalized control in a lower-limb prosthesis.<n>In addition, user-specific vs. pooled training data is evaluated to improve machine learning (ML) and Deep Learning (DL) performance for turn intent prediction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Objective: This paper investigates the potential of learnable activation functions in Kolmogorov-Arnold Networks (KANs) for personalized control in a lower-limb prosthesis. In addition, user-specific vs. pooled training data is evaluated to improve machine learning (ML) and Deep Learning (DL) performance for turn intent prediction. Method: Inertial measurement unit (IMU) data from the shank were collected from five individuals with lower-limb amputation performing turning tasks in a laboratory setting. Ability to classify an upcoming turn was evaluated for Multilayer Perceptron (MLP), Kolmogorov-Arnold Network (KAN), convolutional neural network (CNN), and fractional Kolmogorov-Arnold Networks (FKAN). The comparison of MLP and KAN (for ML models) and FKAN and CNN (for DL models) assessed the effectiveness of learnable activation functions. Models were trained separately on user-specific and pooled data to evaluate the impact of training data on their performance. Results: Learnable activation functions in KAN and FKAN did not yield significant improvement compared to MLP and CNN, respectively. Training on user-specific data yielded superior results compared to pooled data for ML models ($p < 0.05$). In contrast, no significant difference was observed between user-specific and pooled training for DL models. Significance: These findings suggest that learnable activation functions may demonstrate distinct advantages in datasets involving more complex tasks and larger volumes. In addition, pooled training showed comparable performance to user-specific training in DL models, indicating that model training for prosthesis control can utilize data from multiple participants.
Related papers
- SPaRFT: Self-Paced Reinforcement Fine-Tuning for Large Language Models [51.74498855100541]
Large language models (LLMs) have shown strong reasoning capabilities when fine-tuned with reinforcement learning (RL)<n>We propose textbfSPaRFT, a self-paced learning framework that enables efficient learning based on the capability of the model being trained.
arXiv Detail & Related papers (2025-08-07T03:50:48Z) - Efficient Multi-Agent System Training with Data Influence-Oriented Tree Search [59.75749613951193]
We propose Data Influence-oriented Tree Search (DITS) to guide both tree search and data selection.<n>By leveraging influence scores, we effectively identify the most impactful data for system improvement.<n>We derive influence score estimation methods tailored for non-differentiable metrics.
arXiv Detail & Related papers (2025-02-02T23:20:16Z) - Kolmogorov-Arnold Networks in Low-Data Regimes: A Comparative Study with Multilayer Perceptrons [2.77390041716769]
Kolmogorov-Arnold Networks (KANs) use highly flexible learnable activation functions directly on network edges.
KANs significantly increase the number of learnable parameters, raising concerns about their effectiveness in data-scarce environments.
We show that individualized activation functions achieve significantly higher predictive accuracy with only a modest increase in parameters.
arXiv Detail & Related papers (2024-09-16T16:56:08Z) - Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review [50.78587571704713]
Learn-Focus-Review (LFR) is a dynamic training approach that adapts to the model's learning progress.<n>LFR tracks the model's learning performance across data blocks (sequences of tokens) and prioritizes revisiting challenging regions of the dataset.<n>Compared to baseline models trained on the full datasets, LFR consistently achieved lower perplexity and higher accuracy.
arXiv Detail & Related papers (2024-09-10T00:59:18Z) - Probing Perfection: The Relentless Art of Meddling for Pulmonary Airway Segmentation from HRCT via a Human-AI Collaboration Based Active Learning Method [13.384578466263566]
In pulmonary tracheal segmentation, the scarcity of annotated data is a prevalent issue.
Deep Learning (DL) methods face challenges: the opacity of 'black box' models and the need for performance enhancement.
We address these challenges by combining diverse query strategies with various DL models.
arXiv Detail & Related papers (2024-07-03T23:27:53Z) - Just How Flexible are Neural Networks in Practice? [89.80474583606242]
It is widely believed that a neural network can fit a training set containing at least as many samples as it has parameters.
In practice, however, we only find solutions via our training procedure, including the gradient and regularizers, limiting flexibility.
arXiv Detail & Related papers (2024-06-17T12:24:45Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Measuring and Improving Attentiveness to Partial Inputs with Counterfactuals [91.59906995214209]
We propose a new evaluation method, Counterfactual Attentiveness Test (CAT)
CAT uses counterfactuals by replacing part of the input with its counterpart from a different example, expecting an attentive model to change its prediction.
We show that GPT3 becomes less attentive with an increased number of demonstrations, while its accuracy on the test data improves.
arXiv Detail & Related papers (2023-11-16T06:27:35Z) - Towards Better Modeling with Missing Data: A Contrastive Learning-based
Visual Analytics Perspective [7.577040836988683]
Missing data can pose a challenge for machine learning (ML) modeling.
Current approaches are categorized into feature imputation and label prediction.
This study proposes a Contrastive Learning framework to model observed data with missing values.
arXiv Detail & Related papers (2023-09-18T13:16:24Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
We propose a simple algorithm called Diffused Value Function (DVF)
It learns a joint multi-step model of the environment-robot interaction dynamics using a diffusion model.
We show how DVF can be used to efficiently capture the state visitation measure for multiple controllers.
arXiv Detail & Related papers (2023-06-09T18:40:55Z) - Harnessing the Power of Explanations for Incremental Training: A
LIME-Based Approach [6.244905619201076]
In this work, model explanations are fed back to the feed-forward training to help the model generalize better.
The framework incorporates the custom weighted loss with Elastic Weight Consolidation (EWC) to maintain performance in sequential testing sets.
The proposed custom training procedure results in a consistent enhancement of accuracy ranging from 0.5% to 1.5% throughout all phases of the incremental learning setup.
arXiv Detail & Related papers (2022-11-02T18:16:17Z) - MUSCLE: Strengthening Semi-Supervised Learning Via Concurrent
Unsupervised Learning Using Mutual Information Maximization [29.368950377171995]
We introduce Mutual-information-based Unsupervised & Semi-supervised Concurrent LEarning (MUSCLE) to combine both unsupervised and semi-supervised learning.
MUSCLE can be used as a stand-alone training scheme for neural networks, and can also be incorporated into other learning approaches.
We show that the proposed hybrid model outperforms state of the art on several standard benchmarks, including CIFAR-10, CIFAR-100, and Mini-Imagenet.
arXiv Detail & Related papers (2020-11-30T23:01:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.