MoRAL: Motion-aware Multi-Frame 4D Radar and LiDAR Fusion for Robust 3D Object Detection
- URL: http://arxiv.org/abs/2505.09422v1
- Date: Wed, 14 May 2025 14:23:33 GMT
- Title: MoRAL: Motion-aware Multi-Frame 4D Radar and LiDAR Fusion for Robust 3D Object Detection
- Authors: Xiangyuan Peng, Yu Wang, Miao Tang, Bierzynski Kay, Lorenzo Servadei, Robert Wille,
- Abstract summary: MoRAL is a motion-aware multi-frame 4D radar and LiDAR fusion framework for robust 3D object detection.<n>First, a Motion-aware Radar (MRE) is designed to compensate for inter-frame radar misalignment from moving objects.<n>Second, a Motion Attention Gated Fusion (MAGF) module integrate radar motion features to guide LiDAR features to focus on dynamic foreground objects.
- Score: 4.765283090183714
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reliable autonomous driving systems require accurate detection of traffic participants. To this end, multi-modal fusion has emerged as an effective strategy. In particular, 4D radar and LiDAR fusion methods based on multi-frame radar point clouds have demonstrated the effectiveness in bridging the point density gap. However, they often neglect radar point clouds' inter-frame misalignment caused by object movement during accumulation and do not fully exploit the object dynamic information from 4D radar. In this paper, we propose MoRAL, a motion-aware multi-frame 4D radar and LiDAR fusion framework for robust 3D object detection. First, a Motion-aware Radar Encoder (MRE) is designed to compensate for inter-frame radar misalignment from moving objects. Later, a Motion Attention Gated Fusion (MAGF) module integrate radar motion features to guide LiDAR features to focus on dynamic foreground objects. Extensive evaluations on the View-of-Delft (VoD) dataset demonstrate that MoRAL outperforms existing methods, achieving the highest mAP of 73.30% in the entire area and 88.68% in the driving corridor. Notably, our method also achieves the best AP of 69.67% for pedestrians in the entire area and 96.25% for cyclists in the driving corridor.
Related papers
- ELMAR: Enhancing LiDAR Detection with 4D Radar Motion Awareness and Cross-modal Uncertainty [3.1212590312985986]
We propose a LiDAR detection framework enhanced by 4D radar motion status and cross-modal uncertainty.<n>Our method achieves state-of-the-art performance with the mAP of 74.89% in the entire area and 88.70% within the driving corridor.
arXiv Detail & Related papers (2025-06-22T09:28:14Z) - ZFusion: An Effective Fuser of Camera and 4D Radar for 3D Object Perception in Autonomous Driving [7.037019489455008]
We propose a 3D object detection method, termed ZFusion, which fuses 4D radar and vision modality.<n> FP-DDCA fuser packs Transformer blocks to interactively fuse multi-modal features at different scales.<n>Experiments show that ZFusion achieved the state-of-the-art mAP in the region of interest.
arXiv Detail & Related papers (2025-04-04T13:29:32Z) - RobuRCDet: Enhancing Robustness of Radar-Camera Fusion in Bird's Eye View for 3D Object Detection [68.99784784185019]
Poor lighting or adverse weather conditions degrade camera performance.<n>Radar suffers from noise and positional ambiguity.<n>We propose RobuRCDet, a robust object detection model in BEV.
arXiv Detail & Related papers (2025-02-18T17:17:38Z) - MutualForce: Mutual-Aware Enhancement for 4D Radar-LiDAR 3D Object Detection [3.1212590312985986]
We propose a 4D radar-LiDAR framework to mutually enhance their representations.<n>First, the indicative features from radar are utilized to guide both radar and LiDAR geometric feature learning.<n>To mitigate their sparsity gap, the shape information from LiDAR is used to enrich radar BEV features.
arXiv Detail & Related papers (2025-01-17T15:48:37Z) - RCBEVDet++: Toward High-accuracy Radar-Camera Fusion 3D Perception Network [34.45694077040797]
We present a radar-camera fusion 3D object detection framework called BEEVDet.
RadarBEVNet encodes sparse radar points into a dense bird's-eye-view feature.
Our method achieves state-of-the-art radar-camera fusion results in 3D object detection, BEV semantic segmentation, and 3D multi-object tracking tasks.
arXiv Detail & Related papers (2024-09-08T05:14:27Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
We introduce Radar Fields - a neural scene reconstruction method designed for active radar imagers.
Our approach unites an explicit, physics-informed sensor model with an implicit neural geometry and reflectance model to directly synthesize raw radar measurements.
We validate the effectiveness of the method across diverse outdoor scenarios, including urban scenes with dense vehicles and infrastructure.
arXiv Detail & Related papers (2024-05-07T20:44:48Z) - MVFAN: Multi-View Feature Assisted Network for 4D Radar Object Detection [15.925365473140479]
4D radar is recognized for its resilience and cost-effectiveness under adverse weather conditions.
Unlike LiDAR and cameras, radar remains unimpaired by harsh weather conditions.
We propose a framework for developing radar-based 3D object detection for autonomous vehicles.
arXiv Detail & Related papers (2023-10-25T06:10:07Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
We propose a novel method named EchoFusion to skip the existing radar signal processing pipeline.
Specifically, we first generate the Bird's Eye View (BEV) queries and then take corresponding spectrum features from radar to fuse with other sensors.
arXiv Detail & Related papers (2023-07-31T09:53:50Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
We introduce a bi-directional LiDAR-Radar fusion framework, termed Bi-LRFusion, to tackle the challenges and improve 3D detection for dynamic objects.
We conduct extensive experiments on nuScenes and ORR datasets, and show that our Bi-LRFusion achieves state-of-the-art performance for detecting dynamic objects.
arXiv Detail & Related papers (2023-06-02T10:57:41Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
We present LiRaNet, a novel end-to-end trajectory prediction method which utilizes radar sensor information along with widely used lidar and high definition (HD) maps.
automotive radar provides rich, complementary information, allowing for longer range vehicle detection as well as instantaneous velocity measurements.
arXiv Detail & Related papers (2020-10-02T00:13:00Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
We tackle the problem of exploiting Radar for perception in the context of self-driving cars.
We propose a new solution that exploits both LiDAR and Radar sensors for perception.
Our approach, dubbed RadarNet, features a voxel-based early fusion and an attention-based late fusion.
arXiv Detail & Related papers (2020-07-28T17:15:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.