論文の概要: PT-MoE: An Efficient Finetuning Framework for Integrating Mixture-of-Experts into Prompt Tuning
- arxiv url: http://arxiv.org/abs/2505.09519v1
- Date: Wed, 14 May 2025 16:16:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-15 21:44:09.527326
- Title: PT-MoE: An Efficient Finetuning Framework for Integrating Mixture-of-Experts into Prompt Tuning
- Title(参考訳): PT-MoE: エクササイズをプロンプトチューニングに統合する効率的なファインタニングフレームワーク
- Authors: Zongqian Li, Yixuan Su, Nigel Collier,
- Abstract要約: 提案するPT-MoEは,効率的なPTを実現するために,行列分解とMix-of-expertsルーティングを統合した新しいフレームワークである。
17データセットにわたる結果は、PT-MoEが質問応答(QA)と数学的問題解決タスクの両方で最先端のパフォーマンスを達成することを示す。
- 参考スコア(独自算出の注目度): 32.4489985319054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parameter-efficient fine-tuning (PEFT) methods have shown promise in adapting large language models, yet existing approaches exhibit counter-intuitive phenomena: integrating router into prompt tuning (PT) increases training efficiency yet does not improve performance universally; parameter reduction through matrix decomposition can improve performance in specific domains. Motivated by these observations and the modular nature of PT, we propose PT-MoE, a novel framework that integrates matrix decomposition with mixture-of-experts (MoE) routing for efficient PT. Results across 17 datasets demonstrate that PT-MoE achieves state-of-the-art performance in both question answering (QA) and mathematical problem solving tasks, improving F1 score by 1.49 points over PT and 2.13 points over LoRA in QA tasks, while enhancing mathematical accuracy by 10.75 points over PT and 0.44 points over LoRA, all while using 25% fewer parameters than LoRA. Our analysis reveals that while PT methods generally excel in QA tasks and LoRA-based methods in math datasets, the integration of matrix decomposition and MoE in PT-MoE yields complementary benefits: decomposition enables efficient parameter sharing across experts while MoE provides dynamic adaptation, collectively enabling PT-MoE to demonstrate cross-task consistency and generalization abilities. These findings, along with ablation studies on routing mechanisms and architectural components, provide insights for future PEFT methods.
- Abstract(参考訳): パラメータ効率のよい微細チューニング(PEFT)法は,大規模な言語モデルに適応する上で有望であるが,既存の手法では逆直観的な現象を呈している: 即時チューニング(PT)にルータを組み込むことで,訓練効率は向上するが,性能は普遍的に向上しない;行列分解によるパラメータ削減は,特定の領域のパフォーマンスを向上させることができる。
これらの観測とPTのモジュラー性によって動機付けられたPT-MoEは,行列分解とMix-of-experts(MoE)ルーティングを統合して効率的なPTを実現する新しいフレームワークである。
17のデータセットにわたる結果は、PT-MoEが質問応答(QA)と数学的問題解決タスクの両方で最先端のパフォーマンスを達成し、F1スコアをPTで1.49ポイント、LORAで2.13ポイント改善し、数学的精度をPTで10.75ポイント、LoRAで0.44ポイント向上した。
解析の結果,PT-MoE における行列分解と MoE の統合は,一般にQA タスクや LoRA ベースの手法に優れるが,PT-MoE における行列分解と MoE の統合は相補的な利点をもたらすことがわかった。
これらの知見は、ルーティング機構とアーキテクチャコンポーネントに関するアブレーション研究とともに、将来のPEFT手法に対する洞察を提供する。
関連論文リスト
- Reinforced Model Merging [53.84354455400038]
本稿では,タスク統合に適した環境とエージェントを含むRMM(Reinforced Model Merging)という,革新的なフレームワークを提案する。
評価プロセス中にデータサブセットを利用することで、報酬フィードバックフェーズのボトルネックに対処し、RMMを最大100倍高速化する。
論文 参考訳(メタデータ) (2025-03-27T08:52:41Z) - Optimal Brain Iterative Merging: Mitigating Interference in LLM Merging [11.708743111945727]
大きな言語モデル(LLM)は印象的な能力を示しているが、その高い計算コストはカスタマイズに困難をもたらす。
モデルマージはコスト効率の良い代替手段を提供するが、既存のメソッドはパラメータ間の干渉に悩まされ、パフォーマンスが低下する。
本稿では,モデル内干渉とモデル間干渉を緩和する新しい手法である,最適脳反復法を提案する。
論文 参考訳(メタデータ) (2025-02-17T09:07:49Z) - ALoRE: Efficient Visual Adaptation via Aggregating Low Rank Experts [71.91042186338163]
ALoREは、Kroneckerによって構築された超複素パラメータ化空間をAggregate Low Rank Expertsに再利用する新しいPETL法である。
巧妙な設計のおかげで、ALoREは無視できる余分なパラメータを保持し、凍ったバックボーンに強制的にマージできる。
論文 参考訳(メタデータ) (2024-12-11T12:31:30Z) - PERFT: Parameter-Efficient Routed Fine-Tuning for Mixture-of-Expert Model [30.620582168350698]
Mixture-of-Experts (MoE) は、リソース利用を改善することでトランスフォーマーをスケールするための強力なアプローチとして登場した。
PEFT(Efficient Fine-Tuning)に関する最近の研究から着想を得て,PEFTモジュールを直接MoE機構に統合するための統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-12T22:03:37Z) - Preserving Pre-trained Representation Space: On Effectiveness of Prefix-tuning for Large Multi-modal Models [24.62337386603331]
大規模マルチモーダルモデル(LMM)は、機械が世界と対話する方法に革命をもたらしている。
下流タスクにLMMを適用するために,パラメータ効率細調整(PEFT)が普及している。
本稿では,各チューニング戦略の長所と短所に着目し,これらのアプローチに典型的な効率性から焦点を移す。
論文 参考訳(メタデータ) (2024-10-29T07:55:50Z) - Efficient and Effective Weight-Ensembling Mixture of Experts for Multi-Task Model Merging [111.8456671452411]
マルチタスク学習(MTL)は、共有モデルを利用して複数のタスクを遂行し、知識伝達を促進する。
マルチタスクモデル統合のためのウェイトエンセブリング・ミックス・オブ・エキスパート(WEMoE)手法を提案する。
WEMoEとE-WEMoEは, MTL性能, 一般化, 堅牢性の観点から, 最先端(SOTA)モデルマージ法より優れていることを示す。
論文 参考訳(メタデータ) (2024-10-29T07:16:31Z) - EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
本稿では,既存の並列処理方式を超越したMoE用パイプラインスケジューラであるEPS-MoEを紹介する。
その結果,既存の並列推論手法と比較して,プリフィルスループットは52.4%向上した。
論文 参考訳(メタデータ) (2024-10-16T05:17:49Z) - Layerwise Recurrent Router for Mixture-of-Experts [42.36093735411238]
Mixture-of-Experts (MoE)アーキテクチャは、トレーニングコストを大幅に増加させることなく、モデルサイズをスケールできる能力で際立っている。
現在のMoEモデルはパラメータ非効率をしばしば表示する。
我々はMixture-of-Experts(RMoE)のためのLayerwise Recurrent Routerを紹介する。
論文 参考訳(メタデータ) (2024-08-13T10:25:13Z) - MoELoRA: Contrastive Learning Guided Mixture of Experts on
Parameter-Efficient Fine-Tuning for Large Language Models [24.17147521556083]
本稿では,新しいPEFT手法であるMoELoRAを紹介する。
数学推論と常識推論のベンチマークにおいて,11のタスクについて実験を行った。
MoELoRAはLoRAよりも4.2%高い平均性能を達成し、いくつかのベンチマークで175B GPT-3.5と比較して競争性能を示した。
論文 参考訳(メタデータ) (2024-02-20T09:30:48Z) - End-to-End Temporal Action Detection with 1B Parameters Across 1000 Frames [55.72994484532856]
時間的行動検出(TAD)は、エンドツーエンドのトレーニングで大幅に改善された。
メモリボトルネックのため、限られたスケールと限られたデータ量を持つモデルだけがエンドツーエンドのトレーニングを受けることができる。
エンド・ツー・エンドトレーニングのメモリ消費を削減し,10億のパラメータと入力映像を1,536フレームにスケールアップする。
論文 参考訳(メタデータ) (2023-11-28T21:31:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。