Neural models for prediction of spatially patterned phase transitions: methods and challenges
- URL: http://arxiv.org/abs/2505.09718v1
- Date: Wed, 14 May 2025 18:24:15 GMT
- Title: Neural models for prediction of spatially patterned phase transitions: methods and challenges
- Authors: Daniel Dylewsky, Sonia Kéfi, Madhur Anand, Chris T. Bauch,
- Abstract summary: Early Warning Signal (EWS) detection has shown promise in identifying dynamical signatures of oncoming critical transitions.<n>This paper explores the successes and shortcomings of neural EWS detection for spatially phase patterned transitions.
- Score: 0.37282630026096597
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dryland vegetation ecosystems are known to be susceptible to critical transitions between alternative stable states when subjected to external forcing. Such transitions are often discussed through the framework of bifurcation theory, but the spatial patterning of vegetation, which is characteristic of drylands, leads to dynamics that are much more complex and diverse than local bifurcations. Recent methodological developments in Early Warning Signal (EWS) detection have shown promise in identifying dynamical signatures of oncoming critical transitions, with particularly strong predictive capabilities being demonstrated by deep neural networks. However, a machine learning model trained on synthetic examples is only useful if it can effectively transfer to a test case of practical interest. These models' capacity to generalize in this manner has been demonstrated for bifurcation transitions, but it is not as well characterized for high-dimensional phase transitions. This paper explores the successes and shortcomings of neural EWS detection for spatially patterned phase transitions, and shows how these models can be used to gain insight into where and how EWS-relevant information is encoded in spatiotemporal dynamics. A few paradigmatic test systems are used to illustrate how the capabilities of such models can be probed in a number of ways, with particular attention to the performances of a number of proposed statistical indicators for EWS and to the supplementary task of distinguishing between abrupt and continuous transitions. Results reveal that model performance often changes dramatically when training and test data sources are interchanged, which offers new insight into the criteria for model generalization.
Related papers
- Neural Network Reprogrammability: A Unified Theme on Model Reprogramming, Prompt Tuning, and Prompt Instruction [55.914891182214475]
We introduce neural network reprogrammability as a unifying framework for model adaptation.<n>We present a taxonomy that categorizes such information manipulation approaches across four key dimensions.<n>We also analyze remaining technical challenges and ethical considerations.
arXiv Detail & Related papers (2025-06-05T05:42:27Z) - SkillMimic-V2: Learning Robust and Generalizable Interaction Skills from Sparse and Noisy Demonstrations [68.9300049150948]
We address a fundamental challenge in Reinforcement Learning from Interaction Demonstration (RLID)<n>Existing data collection approaches yield sparse, disconnected, and noisy trajectories that fail to capture the full spectrum of possible skill variations and transitions.<n>We present two data augmentation techniques: a Stitched Trajectory Graph (STG) that discovers potential transitions between demonstration skills, and a State Transition Field (STF) that establishes unique connections for arbitrary states within the demonstration neighborhood.
arXiv Detail & Related papers (2025-05-04T13:00:29Z) - Robust Traffic Forecasting against Spatial Shift over Years [11.208740750755025]
We investigate state-temporal-the-art models using newly proposed traffic OOD benchmarks.
We find that these models experience significant decline in performance.
We propose a novel of Mixture Experts framework, which learns a set of graph generators during training and combines them to generate new graphs.
Our method is both parsimonious and efficacious, and can be seamlessly integrated into anytemporal model.
arXiv Detail & Related papers (2024-10-01T03:49:29Z) - Causal Temporal Representation Learning with Nonstationary Sparse Transition [22.6420431022419]
Causal Temporal Representation Learning (Ctrl) methods aim to identify the temporal causal dynamics of complex nonstationary temporal sequences.
This work adopts a sparse transition assumption, aligned with intuitive human understanding, and presents identifiability results from a theoretical perspective.
We introduce a novel framework, Causal Temporal Representation Learning with Nonstationary Sparse Transition (CtrlNS), designed to leverage the constraints on transition sparsity.
arXiv Detail & Related papers (2024-09-05T00:38:27Z) - Phase Transitions in the Output Distribution of Large Language Models [0.9374652839580183]
In a physical system, changing parameters such as temperature can induce a phase transition: an abrupt change from one state of matter to another.
The task of identifying phase transitions requires human analysis and some prior understanding of the system to narrow down which low-dimensional properties to monitor and analyze.
Statistical methods for the automated detection of phase transitions from data have recently been proposed within the physics community.
We quantify distributional changes in the generated output via statistical distances, which can be efficiently estimated with access to the probability distribution over next-tokens.
arXiv Detail & Related papers (2024-05-27T12:04:36Z) - Spatiotemporal Implicit Neural Representation as a Generalized Traffic Data Learner [46.866240648471894]
Spatiotemporal Traffic Data (STTD) measures the complex dynamical behaviors of the multiscale transportation system.
We present a novel paradigm to address the STTD learning problem by parameterizing STTD as an implicit neural representation.
We validate its effectiveness through extensive experiments in real-world scenarios, showcasing applications from corridor to network scales.
arXiv Detail & Related papers (2024-05-06T06:23:06Z) - A Poisson-Gamma Dynamic Factor Model with Time-Varying Transition Dynamics [51.147876395589925]
A non-stationary PGDS is proposed to allow the underlying transition matrices to evolve over time.
A fully-conjugate and efficient Gibbs sampler is developed to perform posterior simulation.
Experiments show that, in comparison with related models, the proposed non-stationary PGDS achieves improved predictive performance.
arXiv Detail & Related papers (2024-02-26T04:39:01Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - A Temporally Disentangled Contrastive Diffusion Model for Spatiotemporal Imputation [35.46631415365955]
We introduce a conditional diffusion framework called C$2$TSD, which incorporates disentangled temporal (trend and seasonality) representations as conditional information.
Our experiments on three real-world datasets demonstrate the superior performance of our approach compared to a number of state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-18T11:59:04Z) - Fast-Slow Test-Time Adaptation for Online Vision-and-Language Navigation [67.18144414660681]
We propose a Fast-Slow Test-Time Adaptation (FSTTA) approach for online Vision-and-Language Navigation (VLN)
Our method obtains impressive performance gains on four popular benchmarks.
arXiv Detail & Related papers (2023-11-22T07:47:39Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
We train a generative model to learn perturbations from data and define specifications with respect to the output of the learned model.
A unique challenge arising from this setting is that existing verifiers cannot tightly approximate sigmoid activations.
We propose a general meta-algorithm for handling sigmoid activations which leverages classical notions of counter-example-guided abstraction refinement.
arXiv Detail & Related papers (2022-06-08T04:09:13Z) - Universal Early Warning Signals of Phase Transitions in Climate Systems [0.586336038845426]
A deep neural network trained exclusively on 2D Ising model phase transitions is tested on a number of real and simulated climate systems.
Its accuracy frequently surpasses that of conventional statistical indicators, with performance shown to be consistently improved by the inclusion of spatial indicators.
arXiv Detail & Related papers (2022-05-31T19:07:15Z) - Topographic VAEs learn Equivariant Capsules [84.33745072274942]
We introduce the Topographic VAE: a novel method for efficiently training deep generative models with topographically organized latent variables.
We show that such a model indeed learns to organize its activations according to salient characteristics such as digit class, width, and style on MNIST.
We demonstrate approximate equivariance to complex transformations, expanding upon the capabilities of existing group equivariant neural networks.
arXiv Detail & Related papers (2021-09-03T09:25:57Z) - Stochastic embeddings of dynamical phenomena through variational
autoencoders [1.7205106391379026]
We use a recognition network to increase the observed space dimensionality during the reconstruction of the phase space.
Our validation shows that this approach not only recovers a state space that resembles the original one, but it is also able to synthetize new time series.
arXiv Detail & Related papers (2020-10-13T10:10:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.