Risk-Aware Safe Reinforcement Learning for Control of Stochastic Linear Systems
- URL: http://arxiv.org/abs/2505.09734v1
- Date: Wed, 14 May 2025 18:49:32 GMT
- Title: Risk-Aware Safe Reinforcement Learning for Control of Stochastic Linear Systems
- Authors: Babak Esmaeili, Nariman Niknejad, Hamidreza Modares,
- Abstract summary: This paper presents a risk-aware safe reinforcement learning control design for discrete-time linear systems.<n>A risk-informed safe controller is also learned besides the RL controller, and the RL and safe controllers are combined together.<n>It is shown that this control-oriented approach reduces data requirements and can also reduce the variance of safety violations.
- Score: 7.952582509792973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a risk-aware safe reinforcement learning (RL) control design for stochastic discrete-time linear systems. Rather than using a safety certifier to myopically intervene with the RL controller, a risk-informed safe controller is also learned besides the RL controller, and the RL and safe controllers are combined together. Several advantages come along with this approach: 1) High-confidence safety can be certified without relying on a high-fidelity system model and using limited data available, 2) Myopic interventions and convergence to an undesired equilibrium can be avoided by deciding on the contribution of two stabilizing controllers, and 3) highly efficient and computationally tractable solutions can be provided by optimizing over a scalar decision variable and linear programming polyhedral sets. To learn safe controllers with a large invariant set, piecewise affine controllers are learned instead of linear controllers. To this end, the closed-loop system is first represented using collected data, a decision variable, and noise. The effect of the decision variable on the variance of the safe violation of the closed-loop system is formalized. The decision variable is then designed such that the probability of safety violation for the learned closed-loop system is minimized. It is shown that this control-oriented approach reduces the data requirements and can also reduce the variance of safety violations. Finally, to integrate the safe and RL controllers, a new data-driven interpolation technique is introduced. This method aims to maintain the RL agent's optimal implementation while ensuring its safety within environments characterized by noise. The study concludes with a simulation example that serves to validate the theoretical results.
Related papers
- From Uncertain to Safe: Conformal Fine-Tuning of Diffusion Models for Safe PDE Control [16.249515106834355]
Deep learning for partial differential equation (PDE)-constrained control is gaining increasing attention.<n>We propose Safe Diffusion Models for PDE Control (SafeDiffCon) to achieve optimal control under safety constraints.<n>We evaluate SafeDiffCon on three control tasks: 1D Burgers' equation, 2D incompressible fluid, and controlled nuclear fusion problem.
arXiv Detail & Related papers (2025-02-04T10:42:30Z) - Sampling-based Safe Reinforcement Learning for Nonlinear Dynamical
Systems [15.863561935347692]
We develop provably safe and convergent reinforcement learning algorithms for control of nonlinear dynamical systems.
Recent advances at the intersection of control and RL follow a two-stage, safety filter approach to enforcing hard safety constraints.
We develop a single-stage, sampling-based approach to hard constraint satisfaction that learns RL controllers enjoying classical convergence guarantees.
arXiv Detail & Related papers (2024-03-06T19:39:20Z) - Learning Predictive Safety Filter via Decomposition of Robust Invariant
Set [6.94348936509225]
This paper presents advantages of both RMPC and RL RL to synthesize safety filters for nonlinear systems.
We propose a policy approach for robust reach problems and establish its complexity.
arXiv Detail & Related papers (2023-11-12T08:11:28Z) - Stable and Safe Reinforcement Learning via a Barrier-Lyapunov
Actor-Critic Approach [1.8924647429604111]
Barrier-Lyapunov Actor-Critic (BLAC) framework helps maintain the aforementioned safety and stability for the system.
Additional backup controller is introduced in case the RL-based controller cannot provide valid control signals.
arXiv Detail & Related papers (2023-04-08T16:48:49Z) - Robust Control for Dynamical Systems With Non-Gaussian Noise via Formal
Abstractions [59.605246463200736]
We present a novel controller synthesis method that does not rely on any explicit representation of the noise distributions.
First, we abstract the continuous control system into a finite-state model that captures noise by probabilistic transitions between discrete states.
We use state-of-the-art verification techniques to provide guarantees on the interval Markov decision process and compute a controller for which these guarantees carry over to the original control system.
arXiv Detail & Related papers (2023-01-04T10:40:30Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
Control Barrier Functions (CBFs) and Control Lyapunov Functions (CLFs) are popular tools for enforcing safety and stability of a controlled system, respectively.
We present a Gaussian Process (GP)-based approach to tackle the problem of model uncertainty in safety-critical controllers that use CBFs and CLFs.
arXiv Detail & Related papers (2021-06-13T23:08:49Z) - Closing the Closed-Loop Distribution Shift in Safe Imitation Learning [80.05727171757454]
We treat safe optimization-based control strategies as experts in an imitation learning problem.
We train a learned policy that can be cheaply evaluated at run-time and that provably satisfies the same safety guarantees as the expert.
arXiv Detail & Related papers (2021-02-18T05:11:41Z) - Learning Hybrid Control Barrier Functions from Data [66.37785052099423]
Motivated by the lack of systematic tools to obtain safe control laws for hybrid systems, we propose an optimization-based framework for learning certifiably safe control laws from data.
In particular, we assume a setting in which the system dynamics are known and in which data exhibiting safe system behavior is available.
arXiv Detail & Related papers (2020-11-08T23:55:02Z) - Learning Stabilizing Controllers for Unstable Linear Quadratic
Regulators from a Single Trajectory [85.29718245299341]
We study linear controllers under quadratic costs model also known as linear quadratic regulators (LQR)
We present two different semi-definite programs (SDP) which results in a controller that stabilizes all systems within an ellipsoid uncertainty set.
We propose an efficient data dependent algorithm -- textsceXploration -- that with high probability quickly identifies a stabilizing controller.
arXiv Detail & Related papers (2020-06-19T08:58:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.