論文の概要: Radiogenomic Bipartite Graph Representation Learning for Alzheimer's Disease Detection
- arxiv url: http://arxiv.org/abs/2505.09848v1
- Date: Wed, 14 May 2025 23:13:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-16 22:29:06.131735
- Title: Radiogenomic Bipartite Graph Representation Learning for Alzheimer's Disease Detection
- Title(参考訳): アルツハイマー病検出のための放射線ゲノム二部グラフ表現学習
- Authors: Aditya Raj, Golrokh Mirzaei,
- Abstract要約: 構造的MRI画像と遺伝子発現データを含む放射線ゲノムデータを用いたアルツハイマー病検出のための新しいアプローチを提案する。
本フレームワークでは,遺伝子と画像の2つの異なるノード型を特徴とする異種二部グラフ表現学習を導入する。
分類精度,リコール,精度,F1スコアなどの指標を用いて,本手法の性能評価を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Imaging and genomic data offer distinct and rich features, and their integration can unveil new insights into the complex landscape of diseases. In this study, we present a novel approach utilizing radiogenomic data including structural MRI images and gene expression data, for Alzheimer's disease detection. Our framework introduces a novel heterogeneous bipartite graph representation learning featuring two distinct node types: genes and images. The network can effectively classify Alzheimer's disease (AD) into three distinct stages:AD, Mild Cognitive Impairment (MCI), and Cognitive Normal (CN) classes, utilizing a small dataset. Additionally, it identified which genes play a significant role in each of these classification groups. We evaluate the performance of our approach using metrics including classification accuracy, recall, precision, and F1 score. The proposed technique holds potential for extending to radiogenomic-based classification to other diseases.
- Abstract(参考訳): 画像とゲノムデータによって特徴が明確でリッチになり、その統合によって病気の複雑な景観に関する新たな洞察がもたらされる。
本研究では, 構造的MRI画像と遺伝子発現データを含む放射線ゲノムデータを用いたアルツハイマー病検出のための新しいアプローチを提案する。
本フレームワークでは,遺伝子と画像の2つの異なるノード型を特徴とする異種二部グラフ表現学習を導入する。
このネットワークは、小さなデータセットを使用して、アルツハイマー病(AD)を、3つの異なるステージ(AD)、軽度認知障害(MCI)、認知正常(CN)に効果的に分類することができる。
さらに、これらの分類群においてどの遺伝子が重要な役割を果たすかを同定した。
分類精度,リコール,精度,F1スコアなどの指標を用いて,本手法の性能評価を行った。
提案手法は、放射線ゲノムに基づく分類を他の疾患に拡張する可能性を秘めている。
関連論文リスト
- Classification of developmental and brain disorders via graph
convolutional aggregation [6.6356049194991815]
本稿では,グラフサンプリングにおける集約を利用したアグリゲータ正規化グラフ畳み込みネットワークを提案する。
提案モデルは,画像特徴と非画像特徴の両方をグラフノードとエッジに組み込むことで,識別グラフノード表現を学習する。
我々は、自閉症脳画像データ交換(ABIDE)とアルツハイマー病神経イメージングイニシアチブ(ADNI)という2つの大きなデータセット上の最近のベースライン手法と比較して、我々のモデルをベンチマークした。
論文 参考訳(メタデータ) (2023-11-13T14:36:29Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
遺伝子ワイド・アソシエーション(GWAS)は、遺伝的変異と特定の形質の関係を同定するために用いられる。
画像遺伝学の表現学習は、GWASによって引き起こされる固有の課題により、ほとんど探索されていない。
本稿では,GWAS の具体的な課題に対処するために,トランスモーダル学習フレームワーク Genetic InfoMax (GIM) を提案する。
論文 参考訳(メタデータ) (2023-09-26T03:59:21Z) - Transfer Learning and Class Decomposition for Detecting the Cognitive
Decline of Alzheimer Disease [0.0]
本稿では,SMRI画像からアルツハイマー病を検出するためのクラス分解を用いた転写学習手法を提案する。
提案モデルは,アルツハイマー病 (AD) と軽度認知障害 (MCI) と認知正常 (CN) の分類課題における最先端の成績を,文献から3%の精度で達成した。
論文 参考訳(メタデータ) (2023-01-31T09:44:52Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
我々はUn Phenotype Ensemblesという名の遺伝子発見のための新しいフレームワークを提案する。
教師なしの方法で学習された表現型のセットをプールすることで、冗長だが非常に表現性の高い表現を構築する。
これらの表現型は、(GWAS)を介して分析され、高い自信と安定した関連のみを保持する。
論文 参考訳(メタデータ) (2023-01-07T18:36:44Z) - Interpretable Graph Convolutional Network of Multi-Modality Brain
Imaging for Alzheimer's Disease Diagnosis [14.894215698742924]
本稿では,アルツハイマー病の同定と分類のための解釈可能なグラフ畳み込みネットワークフレームワークを提案する。
我々はGrad-CAM法を用いて、GCNが同定した最も差別的な特徴を脳接続パターンから定量化した。
論文 参考訳(メタデータ) (2022-04-27T20:43:11Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
ラベルのないデータセットから3次元神経形態の低次元表現を学習するためのデータ駆動型アプローチであるGraphDINOを提案する。
2つの異なる種と複数の脳領域において、この方法では、専門家による手動の特徴に基づく分類と同程度に形態学的細胞型クラスタリングが得られることを示す。
提案手法は,大規模データセットにおける新しい形態的特徴や細胞型の発見を可能にする可能性がある。
論文 参考訳(メタデータ) (2021-12-23T12:17:47Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。