論文の概要: Advanced Crash Causation Analysis for Freeway Safety: A Large Language Model Approach to Identifying Key Contributing Factors
- arxiv url: http://arxiv.org/abs/2505.09949v1
- Date: Thu, 15 May 2025 04:07:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-16 22:29:06.181458
- Title: Advanced Crash Causation Analysis for Freeway Safety: A Large Language Model Approach to Identifying Key Contributing Factors
- Title(参考訳): 高速道路安全のための衝突因果解析の高度化:鍵要因の同定のための大規模言語モデルアプローチ
- Authors: Ahmed S. Abdelrahman, Mohamed Abdel-Aty, Samgyu Yang, Abdulrahman Faden,
- Abstract要約: 本研究は,大規模言語モデル(LLM)を利用して高速道路の事故データを解析し,それに応じて事故原因分析を行う。
微調整されたLlama3 8Bモデルは、ゼロショット分類によって事前にラベル付けされたデータなしでクラッシュ因果を識別するために使用された。
その結果, LLMはアルコール欠乏運転, スピード, 積極的運転, 運転不注意などの事故原因を効果的に同定できることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the factors contributing to traffic crashes and developing strategies to mitigate their severity is essential. Traditional statistical methods and machine learning models often struggle to capture the complex interactions between various factors and the unique characteristics of each crash. This research leverages large language model (LLM) to analyze freeway crash data and provide crash causation analysis accordingly. By compiling 226 traffic safety studies related to freeway crashes, a training dataset encompassing environmental, driver, traffic, and geometric design factors was created. The Llama3 8B model was fine-tuned using QLoRA to enhance its understanding of freeway crashes and their contributing factors, as covered in these studies. The fine-tuned Llama3 8B model was then used to identify crash causation without pre-labeled data through zero-shot classification, providing comprehensive explanations to ensure that the identified causes were reasonable and aligned with existing research. Results demonstrate that LLMs effectively identify primary crash causes such as alcohol-impaired driving, speeding, aggressive driving, and driver inattention. Incorporating event data, such as road maintenance, offers more profound insights. The model's practical applicability and potential to improve traffic safety measures were validated by a high level of agreement among researchers in the field of traffic safety, as reflected in questionnaire results with 88.89%. This research highlights the complex nature of traffic crashes and how LLMs can be used for comprehensive analysis of crash causation and other contributing factors. Moreover, it provides valuable insights and potential countermeasures to aid planners and policymakers in developing more effective and efficient traffic safety practices.
- Abstract(参考訳): 交通事故の原因を理解し、その深刻さを軽減するための戦略を開発することが不可欠である。
従来の統計手法や機械学習モデルは、様々な要因間の複雑な相互作用と、それぞれのクラッシュの特徴を捉えるのに苦労することが多い。
本研究は,大規模言語モデル(LLM)を利用して高速道路の事故データを解析し,それに応じて事故原因分析を行う。
高速道路事故に関する226の交通安全研究をコンパイルすることにより、環境、運転者、交通、幾何学的設計要素を含むトレーニングデータセットが作成された。
Llama3 8Bモデルは、QLoRAを用いて、高速道路の事故とその要因の理解を深めるために微調整された。
微調整されたLlama3 8Bモデルは、ゼロショット分類によって事前にラベル付けされたデータなしで衝突原因を特定するために使用され、特定された原因が合理的で既存の研究と整合していることを保証するための包括的な説明を提供する。
その結果, LLMはアルコール欠乏運転, スピード, 積極的運転, 運転不注意などの事故原因を効果的に同定できることが示唆された。
道路メンテナンスなどのイベントデータを組み込むことで、より深い洞察が得られる。
このモデルの実用性と交通安全対策改善の可能性は,交通安全分野の研究者の間で高い水準の合意によって検証され,88.89%の回答を得た。
本研究は,交通事故の複雑な性質と,事故原因などの要因の包括的分析にLLMをどのように利用できるかを明らかにする。
さらに、より効果的で効率的な交通安全プラクティスを開発する上で、プランナーや政策立案者を支援するための貴重な洞察と潜在的な対策を提供する。
関連論文リスト
- Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
安全な運転プラクティスを再現する自律システムを開発するためには、人間のデータを分析することが不可欠だ。
本稿では,複数の軌道予測データセットにおける交通・安全規則の適合性の比較評価を行う。
論文 参考訳(メタデータ) (2024-11-04T09:21:00Z) - An Explainable Machine Learning Approach to Traffic Accident Fatality Prediction [0.02730969268472861]
道路交通事故は世界中で公衆衛生上の脅威となっている。
本研究では,致命的および致命的でない道路事故を分類するための機械学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-09-18T12:41:56Z) - Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
本稿では,エンドツーエンド自動運転の因果関係を探究し,分析するための包括的アプローチを提案する。
私たちの研究は、エンドツーエンドの自動運転の謎を初めて明らかにし、ブラックボックスを白い箱に変えた。
論文 参考訳(メタデータ) (2024-07-09T04:56:11Z) - Learning Traffic Crashes as Language: Datasets, Benchmarks, and What-if Causal Analyses [76.59021017301127]
我々は,CrashEventという大規模トラフィッククラッシュ言語データセットを提案し,実世界のクラッシュレポート19,340を要約した。
さらに,クラッシュイベントの特徴学習を,新たなテキスト推論問題として定式化し,さらに様々な大規模言語モデル(LLM)を微調整して,詳細な事故結果を予測する。
実験の結果, LLMに基づくアプローチは事故の重大度を予測できるだけでなく, 事故の種類を分類し, 損害を予測できることがわかった。
論文 参考訳(メタデータ) (2024-06-16T03:10:16Z) - Exploring the Determinants of Pedestrian Crash Severity Using an AutoML Approach [0.0]
この研究は、さまざまな説明変数がクラッシュ結果に与える影響を評価するためにAutoMLを使用している。
この研究は、予測モデルにおける個々の特徴の寄与を解釈するために、SHAP(SHapley Additive exPlanations)を組み込んだ。
論文 参考訳(メタデータ) (2024-06-07T22:02:36Z) - Inferring Heterogeneous Treatment Effects of Crashes on Highway Traffic:
A Doubly Robust Causal Machine Learning Approach [15.717402981513812]
本稿では,高速道路における各種事故の因果的影響を推定する新しい因果的機械学習フレームワークを提案する。
ワシントン州のハイウェイ州間高速道路5号線で発生した4815件の事故実験の結果、様々な距離と時間における事故の不均一な処理効果が明らかになった。
論文 参考訳(メタデータ) (2024-01-01T15:03:14Z) - DRUformer: Enhancing the driving scene Important object detection with
driving relationship self-understanding [50.81809690183755]
交通事故はしばしば致命傷を負い、2023年まで5000万人以上の死者を出した。
従来の研究は、主に個々の参加者の重要性を評価し、それらを独立した存在として扱うものであった。
本稿では、重要な物体検出タスクを強化するために、運転シーン関連自己理解変換器(DRUformer)を紹介する。
論文 参考訳(メタデータ) (2023-11-11T07:26:47Z) - Impact of risk factors on work zone crashes using logistic models and
Random Forest [9.5148976460603]
本研究は、ハイウェイI-94沿いの労働地帯で発生した2016年のミシガン州(USA)の激しい事故に焦点を当てた。
この研究は、環境、運転者、事故、道路関連変数を特徴付ける幅広い事故変数からリスク要因を特定した。
論文 参考訳(メタデータ) (2021-04-14T00:27:11Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
道路交通事故予測におけるデータ不足の根本的な課題を、事故の代わりに緊急ブレーキイベントをトレーニングすることで解決します。
メルセデス・ベンツ車両の緊急ブレーキデータに基づくドイツにおける交通事故予測モデルを実装したプロトタイプを提案する。
論文 参考訳(メタデータ) (2021-02-12T18:17:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。