論文の概要: Approximated Behavioral Metric-based State Projection for Federated Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2505.09959v1
- Date: Thu, 15 May 2025 04:41:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-16 22:29:06.184628
- Title: Approximated Behavioral Metric-based State Projection for Federated Reinforcement Learning
- Title(参考訳): フェデレーション強化学習のための行動指標に基づく状態予測
- Authors: Zengxia Guo, Bohui An, Zhongqi Lu,
- Abstract要約: フェデレート強化学習(FRL)法は通常、暗号化されたローカル状態またはポリシー情報を共有する。
本稿では, 動作距離に基づく状態予測関数の共有がFRLの性能向上の有望な方法であることを示す。
我々はFRLフレームワークであるFedRAGを導入し、各クライアントの状態の実用的なプロジェクション関数を計算的に学習する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated reinforcement learning (FRL) methods usually share the encrypted local state or policy information and help each client to learn from others while preserving everyone's privacy. In this work, we propose that sharing the approximated behavior metric-based state projection function is a promising way to enhance the performance of FRL and concurrently provides an effective protection of sensitive information. We introduce FedRAG, a FRL framework to learn a computationally practical projection function of states for each client and aggregating the parameters of projection functions at a central server. The FedRAG approach shares no sensitive task-specific information, yet provides information gain for each client. We conduct extensive experiments on the DeepMind Control Suite to demonstrate insightful results.
- Abstract(参考訳): フェデレーション強化学習(FRL)手法は通常、暗号化されたローカル状態またはポリシー情報を共有し、各クライアントが全員のプライバシーを維持しながら他者から学ぶのを助ける。
本研究では,FRLの性能を高めるために,近似行動量に基づく状態投影関数の共有が有望な方法であり,センシティブな情報の効果的な保護を同時に提供することを提案する。
我々はFRLフレームワークであるFedRAGを導入し、各クライアントの状態の計算学的に実用的なプロジェクション関数を学習し、中央サーバでのプロジェクション関数のパラメータを集約する。
FedRAGのアプローチでは、機密性の高いタスク固有の情報は共有されていないが、各クライアントに情報ゲインを提供する。
我々はDeepMind Control Suiteで広範な実験を行い、洞察に富んだ結果を実証する。
関連論文リスト
- Optimal Strategies for Federated Learning Maintaining Client Privacy [8.518748080337838]
本稿では,フェデレートラーニングシステムのモデル性能とコミュニケーションのトレードオフについて検討する。
グローバルなトレーニングラウンド当たりの1つのローカルエポックのトレーニングは、同じプライバシ予算を維持しながら、最適なパフォーマンスを提供することを示す。
論文 参考訳(メタデータ) (2025-01-24T12:34:38Z) - Federated Face Forgery Detection Learning with Personalized Representation [63.90408023506508]
ディープジェネレータ技術は、区別がつかない高品質のフェイクビデオを制作し、深刻な社会的脅威をもたらす可能性がある。
従来の偽造検出手法は、データを直接集中的に訓練する。
本稿では,個人化表現を用いた新しいフェデレーション顔偽造検出学習を提案する。
論文 参考訳(メタデータ) (2024-06-17T02:20:30Z) - Federated Behavioural Planes: Explaining the Evolution of Client Behaviour in Federated Learning [6.64590374742412]
FLシステムの力学を解析・可視化・説明するための新しい手法であるFBP(Federated Behavioural Planes)を紹介する。
我々の実験は、FBPがクライアントの進化状態を記述した情報トラジェクトリを提供することを示した。
我々は、悪意のあるクライアントモデルやノイズの多いクライアントモデルを検出するために、Federated Behavioural Shieldsという名前のロバストアグリゲーション手法を提案する。
論文 参考訳(メタデータ) (2024-05-24T15:17:51Z) - FedMIA: An Effective Membership Inference Attack Exploiting "All for One" Principle in Federated Learning [17.141646895576145]
Federated Learning(FL)は、分散データ上で機械学習モデルをトレーニングするための有望なアプローチである。
メンバーシップ推論攻撃(MIA)は、特定のデータポイントがターゲットクライアントのトレーニングセットに属するかどうかを判断することを目的としている。
我々はFedMIAと呼ばれる3段階のメンバーシップ推論攻撃(MIA)手法を導入し、MIAの有効性を高めるため、複数の通信ラウンドにまたがる全クライアントからの更新を平均化する。
論文 参考訳(メタデータ) (2024-02-09T09:58:35Z) - Personalised Federated Learning On Heterogeneous Feature Spaces [17.243339961137643]
ほとんどのパーソナライズド・フェデレーションド・ラーニング・アプローチは、すべてのクライアントの生データは共通の部分空間で定義されていると仮定する。
本稿では,クライアントのデータをローカルな埋め込み関数を介して共通の特徴空間にマッピングする汎用フレームワークFLICを提案する。
論文 参考訳(メタデータ) (2023-01-26T22:24:50Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
フェデレーション学習は、プライバシと通信の制限を尊重しながら、クライアントの大規模なネットワークに分散されたサンプルからのトレーニングモデルを可能にする。
これら2つのハードルを同時に処理する理論的なスピードアップを保証する新しいアルゴリズム手法を開発した。
提案手法は,すべてのクライアントのデータを用いてグローバルな共通表現を見つけ,各クライアントに対してパーソナライズされたソリューションにつながるパラメータの集合を学習するために,表現学習理論からのアイデアに依存している。
論文 参考訳(メタデータ) (2022-06-05T01:14:46Z) - Understanding Clipping for Federated Learning: Convergence and
Client-Level Differential Privacy [67.4471689755097]
本稿では, 切断したFedAvgが, 実質的なデータ均一性でも驚くほど良好に動作できることを実証的に示す。
本稿では,差分プライベート(DP)FedAvgアルゴリズムの収束解析を行い,クリッピングバイアスとクライアント更新の分布との関係を明らかにする。
論文 参考訳(メタデータ) (2021-06-25T14:47:19Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
本稿では,クライアント間の共有データ表現と,クライアント毎のユニークなローカルヘッダを学習するための,新しいフェデレーション学習フレームワークとアルゴリズムを提案する。
提案アルゴリズムは, クライアント間の分散計算能力を利用して, 表現の更新毎に低次元の局所パラメータに対して, 多数の局所更新を行う。
この結果は、データ分布間の共有低次元表現を学習することを目的とした、幅広い種類の問題に対するフェデレーション学習以上の関心を持っている。
論文 参考訳(メタデータ) (2021-02-14T05:36:25Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
フェデレーションラーニングにより、クライアントはプライベートデータを中央サーバーに送信することなく、グローバルモデルを共同でトレーニングできます。
em-Influenceという新しい概念を定義し、パラメータに対するこの影響を定量化し、このメトリクスを推定する効果的な効率的なモデルを提案しました。
論文 参考訳(メタデータ) (2020-12-20T14:34:36Z) - SPEED: Secure, PrivatE, and Efficient Deep learning [2.283665431721732]
私たちは、強力なプライバシー制約に対処できるディープラーニングフレームワークを導入します。
協調学習、差分プライバシー、同型暗号化に基づいて、提案手法は最先端技術に進化する。
論文 参考訳(メタデータ) (2020-06-16T19:31:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。