論文の概要: Federated Behavioural Planes: Explaining the Evolution of Client Behaviour in Federated Learning
- arxiv url: http://arxiv.org/abs/2405.15632v2
- Date: Sun, 13 Oct 2024 16:40:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-15 17:54:26.048188
- Title: Federated Behavioural Planes: Explaining the Evolution of Client Behaviour in Federated Learning
- Title(参考訳): フェデレーテッド行動平面:フェデレーテッド学習における顧客行動の進化について
- Authors: Dario Fenoglio, Gabriele Dominici, Pietro Barbiero, Alberto Tonda, Martin Gjoreski, Marc Langheinrich,
- Abstract要約: FLシステムの力学を解析・可視化・説明するための新しい手法であるFBP(Federated Behavioural Planes)を紹介する。
我々の実験は、FBPがクライアントの進化状態を記述した情報トラジェクトリを提供することを示した。
我々は、悪意のあるクライアントモデルやノイズの多いクライアントモデルを検出するために、Federated Behavioural Shieldsという名前のロバストアグリゲーション手法を提案する。
- 参考スコア(独自算出の注目度): 6.64590374742412
- License:
- Abstract: Federated Learning (FL), a privacy-aware approach in distributed deep learning environments, enables many clients to collaboratively train a model without sharing sensitive data, thereby reducing privacy risks. However, enabling human trust and control over FL systems requires understanding the evolving behaviour of clients, whether beneficial or detrimental for the training, which still represents a key challenge in the current literature. To address this challenge, we introduce Federated Behavioural Planes (FBPs), a novel method to analyse, visualise, and explain the dynamics of FL systems, showing how clients behave under two different lenses: predictive performance (error behavioural space) and decision-making processes (counterfactual behavioural space). Our experiments demonstrate that FBPs provide informative trajectories describing the evolving states of clients and their contributions to the global model, thereby enabling the identification of clusters of clients with similar behaviours. Leveraging the patterns identified by FBPs, we propose a robust aggregation technique named Federated Behavioural Shields to detect malicious or noisy client models, thereby enhancing security and surpassing the efficacy of existing state-of-the-art FL defense mechanisms. Our code is publicly available on GitHub.
- Abstract(参考訳): 分散ディープラーニング環境におけるプライバシを意識したアプローチであるフェデレーション学習(FL)は、多くのクライアントが機密データを共有せずにモデルを協調的にトレーニングすることで、プライバシのリスクを低減する。
しかし、FLシステムの人間による信頼とコントロールを可能にするには、クライアントの進化する振る舞いを理解する必要がある。
この課題に対処するために、FBP(Federated Behavioural Planes)を導入し、FLシステムのダイナミクスを分析し、視覚化し、説明し、クライアントが2つの異なるレンズ(予測性能(エラー行動空間)と意思決定プロセス(非現実行動空間)でどのように振る舞うかを示す。
実験により,FBPはクライアントの進化状態とそのグローバルモデルへの貢献を記述した情報的トラジェクトリを提供することで,クライアントのクラスタを類似した振る舞いで識別できることが実証された。
FBPによって同定されたパターンを利用して、フェデレートビヘイビアシールド(Federated Behavioural Shields)と呼ばれるロバストアグリゲーション手法を提案し、悪意のあるクライアントモデルやノイズの多いクライアントモデルを検出し、セキュリティを向上し、既存の最先端FL防御機構を克服する。
私たちのコードはGitHubで公開されています。
関連論文リスト
- Formal Logic-guided Robust Federated Learning against Poisoning Attacks [6.997975378492098]
Federated Learning (FL)は、集中型機械学習(ML)に関連するプライバシー問題に対して、有望な解決策を提供する。
FLは、敵クライアントがトレーニングデータやモデル更新を操作して全体的なモデルパフォーマンスを低下させる、毒殺攻撃など、さまざまなセキュリティ上の脅威に対して脆弱である。
本稿では,時系列タスクにおけるフェデレート学習における中毒攻撃の軽減を目的とした防御機構を提案する。
論文 参考訳(メタデータ) (2024-11-05T16:23:19Z) - Reinforcement Learning as a Catalyst for Robust and Fair Federated
Learning: Deciphering the Dynamics of Client Contributions [6.318638597489423]
Reinforcement Federated Learning (RFL)は、深い強化学習を活用して、集約中のクライアントコントリビューションを適応的に最適化する新しいフレームワークである。
堅牢性に関しては、RFLは同等の公平性を維持しつつ、最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2024-02-08T10:22:12Z) - Addressing Membership Inference Attack in Federated Learning with Model Compression [8.842172558292027]
機械学習のプライバシ保護ソリューションとしてフェデレートラーニング(FL)が提案されている。
最近の研究によると、FLはメンバーシップ推論攻撃によってプライベートクライアントデータを漏洩させることができる。
これらの攻撃の有効性は、クライアントのデータセットのサイズとモデルの複雑さと負の相関関係があることを示します。
論文 参考訳(メタデータ) (2023-11-29T15:54:15Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - Balancing Privacy Protection and Interpretability in Federated Learning [8.759803233734624]
フェデレートラーニング(FL)は、ローカルクライアントから中央サーバにモデルパラメータを共有することで、グローバルモデルを分散的にトレーニングすることを目的としている。
近年の研究では、FLは情報漏洩に悩まされており、敵はローカルクライアントから共有パラメータを解析してトレーニングデータを回復しようとする。
本稿では,FLにおけるクライアントモデルの勾配に雑音を選択的に追加する,単純かつ効果的な適応型微分プライバシー(ADP)機構を提案する。
論文 参考訳(メタデータ) (2023-02-16T02:58:22Z) - FedPerm: Private and Robust Federated Learning by Parameter Permutation [2.406359246841227]
Federated Learning(FL)は、相互に信頼できないクライアントが共通の機械学習モデルを共同でトレーニングできるようにする分散学習パラダイムである。
クライアントデータのプライバシはFLで最重要である。同時に、モデルが敵のクライアントからの攻撃から保護されなければならない。
我々は、データプライバシを増幅する新しいモデル内パラメータシャッフル技術と、クライアントのモデル更新の暗号化集約を可能にするPrivate Information Retrieval(PIR)ベースの技術を組み合わせることで、これらの問題に対処する新しいFLアルゴリズムであるFedPermを提案する。
論文 参考訳(メタデータ) (2022-08-16T19:40:28Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
フェデレートラーニング(FL)は、生データを共有することなく、AIモデルの協調トレーニングを可能にする。
モデル勾配からのディープニューラルネットワークの反転に関する最近の研究は、トレーニングデータの漏洩を防止するためのFLの安全性に関する懸念を提起した。
本研究では,本論文で提示されたこれらの攻撃が実際のFLユースケースでは実行不可能であることを示し,新たなベースライン攻撃を提供する。
論文 参考訳(メタデータ) (2022-02-14T18:33:12Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - Understanding Clipping for Federated Learning: Convergence and
Client-Level Differential Privacy [67.4471689755097]
本稿では, 切断したFedAvgが, 実質的なデータ均一性でも驚くほど良好に動作できることを実証的に示す。
本稿では,差分プライベート(DP)FedAvgアルゴリズムの収束解析を行い,クリッピングバイアスとクライアント更新の分布との関係を明らかにする。
論文 参考訳(メタデータ) (2021-06-25T14:47:19Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
ブロックチェーンをFL、すなわちブロックチェーン支援分散学習(BLADE-FL)に統合することで、分散FLフレームワークを提案する。
提案されたBLADE-FLのラウンドでは、各クライアントはトレーニング済みモデルを他のクライアントにブロードキャストし、受信したモデルに基づいてブロックを生成し、次のラウンドのローカルトレーニングの前に生成されたブロックからモデルを集約します。
遅延クライアントがblade-flの学習性能に与える影響を調査し,最適なk,学習パラメータ,遅延クライアントの割合の関係を特徴付ける。
論文 参考訳(メタデータ) (2021-01-18T07:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。