Cross-Functional AI Task Forces (X-FAITs) for AI Transformation of Software Organizations
- URL: http://arxiv.org/abs/2505.10021v1
- Date: Thu, 15 May 2025 07:07:14 GMT
- Title: Cross-Functional AI Task Forces (X-FAITs) for AI Transformation of Software Organizations
- Authors: Lucas Gren, Robert Feldt,
- Abstract summary: Cross-Functional AI Task Force (X-FAIT) aims to bridge the gap between strategic AI ambitions and operational execution.<n>X-FAIT employs force field analysis, executive sponsorship, cross-functional integration, and systematic risk assessment strategies.
- Score: 9.847963830982241
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This experience report introduces the Cross-Functional AI Task Force (X-FAIT) framework to bridge the gap between strategic AI ambitions and operational execution within software-intensive organizations. Drawing from an Action Research case study at a global Swedish enterprise, we identify and address critical barriers such as departmental fragmentation, regulatory constraints, and organizational inertia that can impede successful AI transformation. X-FAIT employs force field analysis, executive sponsorship, cross-functional integration, and systematic risk assessment strategies to coordinate efforts across organizational boundaries, facilitating knowledge sharing and ensuring AI initiatives align with objectives. The framework provides both theoretical insights into AI-driven organizational transformation and practical guidance for software organizations aiming to effectively integrate AI into their daily workflows and, longer-term, products.
Related papers
- Agentic AI in Product Management: A Co-Evolutionary Model [0.0]
This study explores agentic AI's transformative role in product management.<n>It proposes a conceptual co-evolutionary framework to guide its integration across the product lifecycle.
arXiv Detail & Related papers (2025-07-01T02:32:32Z) - OWL: Optimized Workforce Learning for General Multi-Agent Assistance in Real-World Task Automation [65.15955645757705]
We introduce Workforce, a hierarchical multi-agent framework that decouples strategic planning from specialized execution.<n>During inference, Workforce seamlessly adapts to new domains by adding or modifying worker agents.<n>For training, we introduce optimized Workforce Learning (OWL), which improves generalization across domains.
arXiv Detail & Related papers (2025-05-29T17:51:58Z) - Perceptions of Agentic AI in Organizations: Implications for Responsible AI and ROI [0.0]
This paper investigates how organizations perceive and adapt such frameworks amidst the emerging landscape of agentic AI.<n>Findings highlight that the inherent complexity of agentic AI systems and their responsible implementation, rooted in the intricate interconnectedness of responsible AI dimensions and the thematic framework, contribute to significant challenges in organizational adaptation.
arXiv Detail & Related papers (2025-04-15T19:15:06Z) - AI-Driven Human-Autonomy Teaming in Tactical Operations: Proposed Framework, Challenges, and Future Directions [10.16399860867284]
Artificial Intelligence (AI) techniques are transforming tactical operations by augmenting human decision-making capabilities.
This paper explores AI-driven Human-Autonomy Teaming (HAT) as a transformative approach.
We propose a comprehensive framework that addresses the key components of AI-driven HAT.
arXiv Detail & Related papers (2024-10-28T15:05:16Z) - Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI [52.138044013005]
generative AI, particularly large language models (LLMs), become increasingly integrated into production applications.
New attack surfaces and vulnerabilities emerge and put a focus on adversarial threats in natural language and multi-modal systems.
Red-teaming has gained importance in proactively identifying weaknesses in these systems, while blue-teaming works to protect against such adversarial attacks.
This work aims to bridge the gap between academic insights and practical security measures for the protection of generative AI systems.
arXiv Detail & Related papers (2024-09-23T10:18:10Z) - Organizing a Society of Language Models: Structures and Mechanisms for Enhanced Collective Intelligence [0.0]
This paper introduces a transformative approach by organizing Large Language Models into community-based structures.
We investigate different organizational models-hierarchical, flat, dynamic, and federated-each presenting unique benefits and challenges for collaborative AI systems.
The implementation of such communities holds substantial promise for improve problem-solving capabilities in AI.
arXiv Detail & Related papers (2024-05-06T20:15:45Z) - Strategic Integration of Artificial Intelligence in the C-Suite: The Role of the Chief AI Officer [0.0]
This paper examines future scenarios across three domains: the AI Economy, the AI Organization, and Competition in the Age of AI.<n>The paper develops a theory-informed framework for the Chief AI Officer (CAIO)<n>This conceptualization clarifies the CAIOs unique role within the executive landscape and presents a forward-looking research agenda.
arXiv Detail & Related papers (2024-04-30T19:07:18Z) - The Foundations of Computational Management: A Systematic Approach to
Task Automation for the Integration of Artificial Intelligence into Existing
Workflows [55.2480439325792]
This article introduces Computational Management, a systematic approach to task automation.
The article offers three easy step-by-step procedures to begin the process of implementing AI within a workflow.
arXiv Detail & Related papers (2024-02-07T01:45:14Z) - Investigate-Consolidate-Exploit: A General Strategy for Inter-Task Agent
Self-Evolution [92.84441068115517]
Investigate-Consolidate-Exploit (ICE) is a novel strategy for enhancing the adaptability and flexibility of AI agents.
ICE promotes the transfer of knowledge between tasks for genuine self-evolution.
Our experiments on the XAgent framework demonstrate ICE's effectiveness, reducing API calls by as much as 80%.
arXiv Detail & Related papers (2024-01-25T07:47:49Z) - Integration and Implementation Strategies for AI Algorithm Deployment
with Smart Routing Rules and Workflow Management [0.37918614538294315]
This paper reviews the challenges hindering the widespread adoption of artificial intelligence (AI) solutions in the healthcare industry.
The absence of standardized frameworks for AI development pose significant barriers and require a new paradigm to address them.
The role of interoperability is examined in this paper as a crucial factor in connecting disparate applications within healthcare.
arXiv Detail & Related papers (2023-11-17T19:38:37Z) - International Institutions for Advanced AI [47.449762587672986]
International institutions may have an important role to play in ensuring advanced AI systems benefit humanity.
This paper identifies a set of governance functions that could be performed at an international level to address these challenges.
It groups these functions into four institutional models that exhibit internal synergies and have precedents in existing organizations.
arXiv Detail & Related papers (2023-07-10T16:55:55Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
Artificial Intelligence for IT Operations (AIOps) is an emerging interdisciplinary field arising in the intersection between machine learning, big data, streaming analytics, and the management of IT operations.
Main aim of the AIOPS workshop is to bring together researchers from both academia and industry to present their experiences, results, and work in progress in this field.
arXiv Detail & Related papers (2021-01-15T10:43:10Z) - Where Responsible AI meets Reality: Practitioner Perspectives on
Enablers for shifting Organizational Practices [3.119859292303396]
This paper examines and seeks to offer a framework for analyzing how organizational culture and structure impact the effectiveness of responsible AI initiatives in practice.
We present the results of semi-structured qualitative interviews with practitioners working in industry, investigating common challenges, ethical tensions, and effective enablers for responsible AI initiatives.
arXiv Detail & Related papers (2020-06-22T15:57:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.