論文の概要: Cutting Through Privacy: A Hyperplane-Based Data Reconstruction Attack in Federated Learning
- arxiv url: http://arxiv.org/abs/2505.10264v1
- Date: Thu, 15 May 2025 13:16:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-16 22:29:06.325465
- Title: Cutting Through Privacy: A Hyperplane-Based Data Reconstruction Attack in Federated Learning
- Title(参考訳): プライバシによるカット:フェデレーション学習におけるハイパープレーンベースのデータ再構成攻撃
- Authors: Francesco Diana, André Nusser, Chuan Xu, Giovanni Neglia,
- Abstract要約: フェデレートラーニング(FL)は、生データを共有せずに、分散クライアント間で機械学習モデルの協調トレーニングを可能にする。
近年の研究ではFLの重大な脆弱性が明らかにされており、悪意のある中央サーバがモデルの更新を操作してクライアントのプライベートデータを再構築できることが示されている。
これらの制約を克服する新たなデータ再構成攻撃を導入する。
- 参考スコア(独自算出の注目度): 10.145100498980346
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) enables collaborative training of machine learning models across distributed clients without sharing raw data, ostensibly preserving data privacy. Nevertheless, recent studies have revealed critical vulnerabilities in FL, showing that a malicious central server can manipulate model updates to reconstruct clients' private training data. Existing data reconstruction attacks have important limitations: they often rely on assumptions about the clients' data distribution or their efficiency significantly degrades when batch sizes exceed just a few tens of samples. In this work, we introduce a novel data reconstruction attack that overcomes these limitations. Our method leverages a new geometric perspective on fully connected layers to craft malicious model parameters, enabling the perfect recovery of arbitrarily large data batches in classification tasks without any prior knowledge of clients' data. Through extensive experiments on both image and tabular datasets, we demonstrate that our attack outperforms existing methods and achieves perfect reconstruction of data batches two orders of magnitude larger than the state of the art.
- Abstract(参考訳): フェデレートラーニング(FL)は、生データを共有せずに、データプライバシを目に見える保存することなく、分散クライアント間で機械学習モデルの協調トレーニングを可能にする。
しかし、最近の研究はFLの重大な脆弱性を明らかにしており、悪意のある中央サーバーがモデルの更新を操作してクライアントのプライベートトレーニングデータを再構築できることを示している。
既存のデータ再構成攻撃には重要な制限がある。クライアントのデータ分散に関する仮定や、バッチサイズがほんの数万のサンプルを超えると、その効率が著しく低下することが多い。
本研究では,これらの制約を克服する新たなデータ再構成攻撃を提案する。
提案手法は,完全連結層における新しい幾何学的視点を利用して悪意のあるモデルパラメータを創出し,クライアントのデータに対する事前の知識を必要とせず,分類タスクにおける任意の大規模データバッチの完全回復を可能にする。
画像と表のデータセットに関する広範な実験を通じて、我々の攻撃が既存の手法より優れており、最先端の2桁のデータのバッチを完璧に再現できることを実証した。
関連論文リスト
- Few-Shot Class-Incremental Learning with Non-IID Decentralized Data [12.472285188772544]
スケーラブルで適応的なインテリジェントなシステムを開発するには、クラスインクリメンタルな学習が不可欠だ。
本稿では、分散機械学習パラダイムであるフェデレートされた数発のクラスインクリメンタルラーニングを紹介する。
本稿では,リプレイバッファデータを利用して既存の知識を維持し,新たな知識の獲得を促進する合成データ駆動フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-18T02:48:36Z) - QBI: Quantile-Based Bias Initialization for Efficient Private Data Reconstruction in Federated Learning [0.5497663232622965]
フェデレーション学習は、ユーザのプライバシを損なうことなく、分散データ上で機械学習モデルのトレーニングを可能にする。
近年の研究では、中央のエンティティが共有モデル更新からプライベートデータを完全に再構築できることが示されている。
論文 参考訳(メタデータ) (2024-06-26T20:19:32Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - Approximate and Weighted Data Reconstruction Attack in Federated Learning [1.802525429431034]
分散学習(FL)は、クライアントがプライベートデータを共有せずに、機械学習モデルを構築するためのコラボレーションを可能にする。
最近のデータ再構成攻撃は、攻撃者がFLで共有されたパラメータに基づいてクライアントのトレーニングデータを復元できることを実証している。
本稿では、クライアントのローカルトレーニングプロセスの中間モデル更新を生成することにより、FedAvgシナリオの攻撃を可能にする近似手法を提案する。
論文 参考訳(メタデータ) (2023-08-13T17:40:56Z) - Robust Quantity-Aware Aggregation for Federated Learning [72.59915691824624]
悪意のあるクライアントは、モデル更新を害し、モデルアグリゲーションにおけるモデル更新の影響を増幅するために大量の要求を行う。
FLの既存の防御メソッドは、悪意のあるモデル更新を処理する一方で、すべての量の良性を扱うか、単にすべてのクライアントの量を無視/停止するだけである。
本稿では,フェデレーション学習のためのロバストな量認識アグリゲーションアルゴリズムであるFedRAを提案し,局所的なデータ量を認識してアグリゲーションを行う。
論文 参考訳(メタデータ) (2022-05-22T15:13:23Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
フェデレートラーニング(FL)は、生データを共有することなく、AIモデルの協調トレーニングを可能にする。
モデル勾配からのディープニューラルネットワークの反転に関する最近の研究は、トレーニングデータの漏洩を防止するためのFLの安全性に関する懸念を提起した。
本研究では,本論文で提示されたこれらの攻撃が実際のFLユースケースでは実行不可能であることを示し,新たなベースライン攻撃を提供する。
論文 参考訳(メタデータ) (2022-02-14T18:33:12Z) - Robbing the Fed: Directly Obtaining Private Data in Federated Learning
with Modified Models [56.0250919557652]
フェデレーション学習は、ユーザーのプライバシーと効率を高めるという約束で急速に人気を集めている。
ユーザプライバシに対する以前の攻撃はスコープが限られており、少数のデータポイントに集約されたグラデーション更新にはスケールしない。
共有モデルアーキテクチャの最小限ではあるが悪意のある変更に基づく新しい脅威モデルを導入する。
論文 参考訳(メタデータ) (2021-10-25T15:52:06Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
モデルインバージョン(MI)攻撃は、モデルパラメータからトレーニングデータを再構成することを目的としている。
本稿では,パブリックデータからプライベートモデルに対する攻撃を行うのに役立つ知識を抽出する,新しい反転型GANを提案する。
実験の結果,これらの手法を組み合わせることで,最先端MI攻撃の成功率を150%向上させることができることがわかった。
論文 参考訳(メタデータ) (2020-10-08T16:20:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。