AttentionGuard: Transformer-based Misbehavior Detection for Secure Vehicular Platoons
- URL: http://arxiv.org/abs/2505.10273v1
- Date: Thu, 15 May 2025 13:24:09 GMT
- Title: AttentionGuard: Transformer-based Misbehavior Detection for Secure Vehicular Platoons
- Authors: Hexu Li, Konstantinos Kalogiannis, Ahmed Mohamed Hussain, Panos Papadimitratos,
- Abstract summary: Vehicle platooning is vulnerable to sophisticated falsification attacks by authenticated insiders.<n>We present AttentionGuard, a transformer-based framework for misbehavior detection.<n>We show that AttentionGuard achieves up to 0.95 F1-score in attack detection, with robust performance maintained during complex maneuvers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Vehicle platooning, with vehicles traveling in close formation coordinated through Vehicle-to-Everything (V2X) communications, offers significant benefits in fuel efficiency and road utilization. However, it is vulnerable to sophisticated falsification attacks by authenticated insiders that can destabilize the formation and potentially cause catastrophic collisions. This paper addresses this challenge: misbehavior detection in vehicle platooning systems. We present AttentionGuard, a transformer-based framework for misbehavior detection that leverages the self-attention mechanism to identify anomalous patterns in mobility data. Our proposal employs a multi-head transformer-encoder to process sequential kinematic information, enabling effective differentiation between normal mobility patterns and falsification attacks across diverse platooning scenarios, including steady-state (no-maneuver) operation, join, and exit maneuvers. Our evaluation uses an extensive simulation dataset featuring various attack vectors (constant, gradual, and combined falsifications) and operational parameters (controller types, vehicle speeds, and attacker positions). Experimental results demonstrate that AttentionGuard achieves up to 0.95 F1-score in attack detection, with robust performance maintained during complex maneuvers. Notably, our system performs effectively with minimal latency (100ms decision intervals), making it suitable for real-time transportation safety applications. Comparative analysis reveals superior detection capabilities and establishes the transformer-encoder as a promising approach for securing Cooperative Intelligent Transport Systems (C-ITS) against sophisticated insider threats.
Related papers
- D4+: Emergent Adversarial Driving Maneuvers with Approximate Functional Optimization [3.763470738887407]
We implement a scenario-based framework with a formal method to identify the impact of malicious drivers interacting with autonomous vehicles.<n>Our results can help designers identify the range of safe operational behaviors that prevent malicious drivers from exploiting the autonomous features of modern vehicles.
arXiv Detail & Related papers (2025-05-20T05:22:03Z) - CANTXSec: A Deterministic Intrusion Detection and Prevention System for CAN Bus Monitoring ECU Activations [53.036288487863786]
We propose CANTXSec, the first deterministic Intrusion Detection and Prevention system based on physical ECU activations.<n>It detects and prevents classical attacks in the CAN bus, while detecting advanced attacks that have been less investigated in the literature.<n>We prove the effectiveness of our solution on a physical testbed, where we achieve 100% detection accuracy in both classes of attacks while preventing 100% of FIAs.
arXiv Detail & Related papers (2025-05-14T13:37:07Z) - Evaluating the Adversarial Robustness of Detection Transformers [4.3012765978447565]
Despite the advancements in object detection transformers (DETRs), their robustness against adversarial attacks remains underexplored.<n>This paper presents a comprehensive evaluation of DETR model and its variants under both white-box and black-box adversarial attacks.<n>Our analysis reveals high intra-network transferability among DETR variants, but limited cross-network transferability to CNN-based models.
arXiv Detail & Related papers (2024-12-25T00:31:10Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - Detecting subtle cyberattacks on adaptive cruise control vehicles: A machine learning approach [4.610653122777888]
More insidious attacks, which only slightly alter driving behavior, can result in network-wide increases in congestion, fuel consumption, and even crash risk without being easily detected.<n>We present a traffic model framework for three types of potential cyberattacks: malicious manipulation of vehicle control commands, false data injection attacks on sensor measurements, and denial-of-service (DoS) attacks.<n>A novel generative adversarial network (GAN)-based anomaly detection model is proposed for real-time identification of such attacks using vehicle trajectory data.
arXiv Detail & Related papers (2023-10-26T01:22:10Z) - CAT: Closed-loop Adversarial Training for Safe End-to-End Driving [54.60865656161679]
Adversarial Training (CAT) is a framework for safe end-to-end driving in autonomous vehicles.
Cat aims to continuously improve the safety of driving agents by training the agent on safety-critical scenarios.
Cat can effectively generate adversarial scenarios countering the agent being trained.
arXiv Detail & Related papers (2023-10-19T02:49:31Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Runtime Stealthy Perception Attacks against DNN-based Adaptive Cruise Control Systems [8.561553195784017]
This paper evaluates the security of the deep neural network based ACC systems under runtime perception attacks.<n>We present a context-aware strategy for the selection of the most critical times for triggering the attacks.<n>We evaluate the effectiveness of the proposed attack using an actual vehicle, a publicly available driving dataset, and a realistic simulation platform.
arXiv Detail & Related papers (2023-07-18T03:12:03Z) - Traj-MAE: Masked Autoencoders for Trajectory Prediction [69.7885837428344]
Trajectory prediction has been a crucial task in building a reliable autonomous driving system by anticipating possible dangers.
We propose an efficient masked autoencoder for trajectory prediction (Traj-MAE) that better represents the complicated behaviors of agents in the driving environment.
Our experimental results in both multi-agent and single-agent settings demonstrate that Traj-MAE achieves competitive results with state-of-the-art methods.
arXiv Detail & Related papers (2023-03-12T16:23:27Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
In a connected transportation system, adaptive traffic signal controllers (ATSC) utilize real-time vehicle trajectory data received from vehicles to regulate green time.
This wirelessly connected ATSC increases cyber-attack surfaces and increases their vulnerability to various cyber-attack modes.
One such mode is a'sybil' attack in which an attacker creates fake vehicles in the network.
An RL agent is trained to learn an optimal rate of sybil vehicle injection to create congestion for an approach(s)
arXiv Detail & Related papers (2022-10-31T20:12:17Z) - Spatial-Temporal-Aware Safe Multi-Agent Reinforcement Learning of
Connected Autonomous Vehicles in Challenging Scenarios [10.37986799561165]
Communication technologies enable coordination among connected and autonomous vehicles (CAVs)
We propose a framework of constrained multi-agent reinforcement learning (MARL) with a parallel safety shield for CAVs.
Results show that our proposed methodology significantly increases system safety and efficiency in challenging scenarios.
arXiv Detail & Related papers (2022-10-05T14:39:07Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
We introduce epsilon-illusory, a novel form of adversarial attack on sequential decision-makers.
Compared to existing attacks, we empirically find epsilon-illusory to be significantly harder to detect with automated methods.
Our findings suggest the need for better anomaly detectors, as well as effective hardware- and system-level defenses.
arXiv Detail & Related papers (2022-07-20T19:49:09Z) - A Certifiable Security Patch for Object Tracking in Self-Driving Systems
via Historical Deviation Modeling [22.753164675538457]
We present the first systematic research on the security of object tracking in self-driving cars.
We prove the mainstream multi-object tracker (MOT) based on Kalman Filter (KF) is unsafe even with an enabled multi-sensor fusion mechanism.
We propose a simple yet effective security patch for KF-based MOT, the core of which is an adaptive strategy to balance the focus of KF on observations and predictions.
arXiv Detail & Related papers (2022-07-18T12:30:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.