論文の概要: MASS: Multi-Agent Simulation Scaling for Portfolio Construction
- arxiv url: http://arxiv.org/abs/2505.10278v1
- Date: Thu, 15 May 2025 13:27:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-16 22:29:06.33026
- Title: MASS: Multi-Agent Simulation Scaling for Portfolio Construction
- Title(参考訳): MASS:ポートフォリオ構築のためのマルチエージェントシミュレーションスケーリング
- Authors: Taian Guo, Haiyang Shen, Jinsheng Huang, Zhengyang Mao, Junyu Luo, Zhuoru Chen, Xuhui Liu, Bingyu Xia, Luchen Liu, Yun Ma, Ming Zhang,
- Abstract要約: 本稿ではポートフォリオ構築のためのマルチエージェントスケーリングシミュレーション(MASS)を紹介する。
MASSは、大規模シミュレーションのエージェント数を徐々に増やすことで、安定かつ継続的な過剰なリターンを達成する。
- 参考スコア(独自算出の注目度): 10.86440325639813
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LLM-based multi-agent has gained significant attention for their potential in simulation and enhancing performance. However, existing works are limited to pure simulations or are constrained by predefined workflows, restricting their applicability and effectiveness. In this paper, we introduce the Multi-Agent Scaling Simulation (MASS) for portfolio construction. MASS achieves stable and continuous excess returns by progressively increasing the number of agents for large-scale simulations to gain a superior understanding of the market and optimizing agent distribution end-to-end through a reverse optimization process, rather than relying on a fixed workflow. We demonstrate its superiority through performance experiments, ablation studies, backtesting experiments, experiments on updated data and stock pools, scaling experiments, parameter sensitivity experiments, and visualization experiments, conducted in comparison with 6 state-of-the-art baselines on 3 challenging A-share stock pools. We expect the paradigm established by MASS to expand to other tasks with similar characteristics. The implementation of MASS has been open-sourced at https://github.com/gta0804/MASS.
- Abstract(参考訳): LLMベースのマルチエージェントは、シミュレーションや性能向上において大きな注目を集めている。
しかし、既存の作業は純粋なシミュレーションに限られるか、事前に定義されたワークフローによって制約され、適用性と有効性を制限する。
本稿ではポートフォリオ構築のためのマルチエージェントスケーリングシミュレーション(MASS)を紹介する。
MASSは、大規模シミュレーションのエージェント数を徐々に増加させ、市場に対する優れた理解を得、固定されたワークフローに頼るのではなく、逆最適化プロセスを通じてエージェント分布をエンドツーエンドに最適化することで、安定かつ継続的な過剰なリターンを達成する。
評価実験,アブレーション実験,バックテスト実験,更新データとストックプールの実験,スケーリング実験,パラメータ感度実験,可視化実験を通じて,Aシェアストックプールの3つの課題に対する6つの現状ベースラインと比較して,その優位性を実証した。
我々は、MASSが確立したパラダイムが、同様の特徴を持つ他のタスクにも拡張されることを期待する。
MASSの実装はhttps://github.com/gta0804/MASSでオープンソース化された。
関連論文リスト
- Can LLMs Simulate Personas with Reversed Performance? A Benchmark for Counterfactual Instruction Following [12.668201122427101]
大規模言語モデル(LLM)は、仮想環境におけるペルソナのシミュレートに広く使われている。
現状のLLMでさえ、逆性能のペルソナをシミュレートできないことを示す。
論文 参考訳(メタデータ) (2025-04-08T22:00:32Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
本稿では,事前学習したFFN層を計算ブロックに分割することで,分散化を実現するDSMoEを提案する。
我々は,Sigmoid アクティベーションとストレートスルー推定器を用いた適応型エキスパートルーティングを実装し,トークンがモデル知識の様々な側面に柔軟にアクセスできるようにする。
LLaMAモデルを用いた実験により、DSMoEは既存のプルーニング法やMoE法に比べて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-02-18T02:37:26Z) - AI Metropolis: Scaling Large Language Model-based Multi-Agent Simulation with Out-of-order Execution [15.596642151634319]
AI Metropolisは、注文外実行スケジューリングを導入することで、LLMエージェントシミュレーションの効率を改善するシミュレーションエンジンである。
我々の評価では,グローバル同期を用いた標準並列シミュレーションにより,AI Metropolisは1.3倍から4.15倍の高速化を実現している。
論文 参考訳(メタデータ) (2024-11-05T21:54:14Z) - SMoA: Improving Multi-agent Large Language Models with Sparse Mixture-of-Agents [14.08299391695986]
マルチエージェントLLMの効率と多様性を向上させるために,スパース混合エージェント(SMoA)フレームワークを提案する。
SMoAは、個々のLSMエージェント間で情報の流れを分散させる新しい応答選択と早期停止機構を導入している。
推論、アライメント、公平性ベンチマークの実験は、SMoAが従来の混合エージェントアプローチに匹敵するパフォーマンスを達成することを示した。
論文 参考訳(メタデータ) (2024-11-05T17:33:39Z) - GenSim: A General Social Simulation Platform with Large Language Model based Agents [111.00666003559324]
我々はtextitGenSim と呼ばれる新しい大規模言語モデル (LLM) ベースのシミュレーションプラットフォームを提案する。
我々のプラットフォームは10万のエージェントをサポートし、現実世界のコンテキストで大規模人口をシミュレートする。
我々の知る限り、GenSimは汎用的で大規模で修正可能な社会シミュレーションプラットフォームに向けた最初の一歩である。
論文 参考訳(メタデータ) (2024-10-06T05:02:23Z) - Very Large-Scale Multi-Agent Simulation in AgentScope [112.98986800070581]
我々は,ユーザフレンドリーなマルチエージェントプラットフォームであるAgentScopeの新機能とコンポーネントを開発した。
高いスケーラビリティと高効率を実現するために,アクタをベースとした分散機構を提案する。
また、多数のエージェントを便利に監視し、管理するためのWebベースのインターフェースも提供します。
論文 参考訳(メタデータ) (2024-07-25T05:50:46Z) - INTAGS: Interactive Agent-Guided Simulation [4.04638613278729]
マルチエージェントシステム(MAS)を含む多くのアプリケーションでは、実稼働に先立って、実験的な(Exp)自律エージェントを高忠実度シミュレータでテストすることが必須である。
本稿では,ExpエージェントとBGエージェントのライブインタラクションによって評価される実システムと合成マルチエージェントシステムとを区別する指標を提案する。
InTAGSを用いてシミュレータのキャリブレーションを行い、現状のWasserstein Generative Adversarial Networkアプローチと比較して、より現実的な市場データを生成することができることを示す。
論文 参考訳(メタデータ) (2023-09-04T19:56:18Z) - QTRAN++: Improved Value Transformation for Cooperative Multi-Agent
Reinforcement Learning [70.382101956278]
QTRANは、最大級の共同作用値関数を学習できる強化学習アルゴリズムである。
理論的な保証は強いが、複雑な環境での実証的な性能は劣っている。
そこで我々はQTRAN++という改良版を提案する。
論文 参考訳(メタデータ) (2020-06-22T05:08:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。