論文の概要: MASS: Muli-agent simulation scaling for portfolio construction
- arxiv url: http://arxiv.org/abs/2505.10278v2
- Date: Thu, 25 Sep 2025 14:52:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-26 14:16:55.792665
- Title: MASS: Muli-agent simulation scaling for portfolio construction
- Title(参考訳): MASS:ポートフォリオ構築のためのマルチエージェントシミュレーションスケーリング
- Authors: Taian Guo, Haiyang Shen, JinSheng Huang, Zhengyang Mao, Junyu Luo, Binqi Chen, Zhuoru Chen, Luchen Liu, Bingyu Xia, Xuhui Liu, Yun Ma, Ming Zhang,
- Abstract要約: 本稿では,マルチエージェント・スケーリング・シミュレーション(MASS)を紹介する。
MASSの中核は、不均一なエージェントの最適分布を動的に学習するために、後方最適化プロセスを採用する。
エージェントの数が指数関数的に増加するにつれて(最大512まで)、集約された決定は徐々に過剰なリターンを増大させる。
- 参考スコア(独自算出の注目度): 17.363056358369143
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The application of LLM-based agents in financial investment has shown significant promise, yet existing approaches often require intermediate steps like predicting individual stock movements or rely on predefined, static workflows. These limitations restrict their adaptability and effectiveness in constructing optimal portfolios. In this paper, we introduce the Multi-Agent Scaling Simulation (MASS), a novel framework that leverages multi-agent simulation for direct, end-to-end portfolio construction. At its core, MASS employs a backward optimization process to dynamically learn the optimal distribution of heterogeneous agents, enabling the system to adapt to evolving market regimes. A key finding enabled by our framework is the exploration of the scaling effect for portfolio construction: we demonstrate that as the number of agents increases exponentially (up to 512), the aggregated decisions yield progressively higher excess returns. Extensive experiments on a challenging, self-collected dataset from the 2023 Chinese A-share market show that MASS consistently outperforms seven state-of-the-art baselines. Further backtesting, stability analyses and the experiment on data leakage concerns validate its enhanced profitability and robustness. We have open-sourced our code, dataset, and training snapshots at https://github.com/gta0804/MASS/ to foster further research.
- Abstract(参考訳): LLMベースのエージェントを金融投資に適用することは、大きな可能性を示してきたが、既存のアプローチでは、個々の株の動きを予測したり、事前に定義された静的ワークフローに依存するような中間ステップを必要とすることが多い。
これらの制限は最適なポートフォリオを構築する際の適応性と有効性を制限する。
本稿では,マルチエージェント・スケーリング・シミュレーション(MASS, Multi-Agent Scaling Simulation)を提案する。
MASSの中核は、不均一なエージェントの最適分布を動的に学習するために後方最適化プロセスを採用し、システムが進化する市場体制に適応できるようにする。
当社のフレームワークによって実現された重要な発見は、ポートフォリオ構築のスケーリング効果の探索である: エージェントの数が指数関数的に増加するにつれて(最大512まで)、集約された決定が徐々に過剰なリターンをもたらすことを実証する。
2023年の中国Aシェア市場における、挑戦的で自己収集されたデータセットに関する大規模な実験は、MASSが一貫して7つの最先端のベースラインを上回っていることを示している。
さらなるバックテスト、安定性分析、およびデータ漏洩に関する実験は、その強化された利益性と堅牢性を検証する。
私たちは、さらなる研究を促進するために、https://github.com/gta0804/MASS/でコード、データセット、トレーニングスナップショットをオープンソース化しました。
関連論文リスト
- Can LLMs Simulate Personas with Reversed Performance? A Benchmark for Counterfactual Instruction Following [12.668201122427101]
大規模言語モデル(LLM)は、仮想環境におけるペルソナのシミュレートに広く使われている。
現状のLLMでさえ、逆性能のペルソナをシミュレートできないことを示す。
論文 参考訳(メタデータ) (2025-04-08T22:00:32Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
本稿では,事前学習したFFN層を計算ブロックに分割することで,分散化を実現するDSMoEを提案する。
我々は,Sigmoid アクティベーションとストレートスルー推定器を用いた適応型エキスパートルーティングを実装し,トークンがモデル知識の様々な側面に柔軟にアクセスできるようにする。
LLaMAモデルを用いた実験により、DSMoEは既存のプルーニング法やMoE法に比べて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-02-18T02:37:26Z) - AI Metropolis: Scaling Large Language Model-based Multi-Agent Simulation with Out-of-order Execution [15.596642151634319]
AI Metropolisは、注文外実行スケジューリングを導入することで、LLMエージェントシミュレーションの効率を改善するシミュレーションエンジンである。
我々の評価では,グローバル同期を用いた標準並列シミュレーションにより,AI Metropolisは1.3倍から4.15倍の高速化を実現している。
論文 参考訳(メタデータ) (2024-11-05T21:54:14Z) - SMoA: Improving Multi-agent Large Language Models with Sparse Mixture-of-Agents [14.08299391695986]
マルチエージェントLLMの効率と多様性を向上させるために,スパース混合エージェント(SMoA)フレームワークを提案する。
SMoAは、個々のLSMエージェント間で情報の流れを分散させる新しい応答選択と早期停止機構を導入している。
推論、アライメント、公平性ベンチマークの実験は、SMoAが従来の混合エージェントアプローチに匹敵するパフォーマンスを達成することを示した。
論文 参考訳(メタデータ) (2024-11-05T17:33:39Z) - CoPS: Empowering LLM Agents with Provable Cross-Task Experience Sharing [70.25689961697523]
クロスタスク体験の共有と選択によるシーケンシャル推論を強化する一般化可能なアルゴリズムを提案する。
我々の研究は、既存のシーケンシャルな推論パラダイムのギャップを埋め、タスク間体験の活用の有効性を検証する。
論文 参考訳(メタデータ) (2024-10-22T03:59:53Z) - GenSim: A General Social Simulation Platform with Large Language Model based Agents [111.00666003559324]
我々はtextitGenSim と呼ばれる新しい大規模言語モデル (LLM) ベースのシミュレーションプラットフォームを提案する。
我々のプラットフォームは10万のエージェントをサポートし、現実世界のコンテキストで大規模人口をシミュレートする。
我々の知る限り、GenSimは汎用的で大規模で修正可能な社会シミュレーションプラットフォームに向けた最初の一歩である。
論文 参考訳(メタデータ) (2024-10-06T05:02:23Z) - Very Large-Scale Multi-Agent Simulation in AgentScope [112.98986800070581]
我々は,ユーザフレンドリーなマルチエージェントプラットフォームであるAgentScopeの新機能とコンポーネントを開発した。
高いスケーラビリティと高効率を実現するために,アクタをベースとした分散機構を提案する。
また、多数のエージェントを便利に監視し、管理するためのWebベースのインターフェースも提供します。
論文 参考訳(メタデータ) (2024-07-25T05:50:46Z) - On Least Square Estimation in Softmax Gating Mixture of Experts [78.3687645289918]
決定論的MoEモデルに基づく最小二乗推定器(LSE)の性能について検討する。
我々は,多種多様な専門家関数の収束挙動を特徴付けるために,強い識別可能性という条件を確立する。
本研究は,専門家の選択に重要な意味を持つ。
論文 参考訳(メタデータ) (2024-02-05T12:31:18Z) - INTAGS: Interactive Agent-Guided Simulation [4.04638613278729]
マルチエージェントシステム(MAS)を含む多くのアプリケーションでは、実稼働に先立って、実験的な(Exp)自律エージェントを高忠実度シミュレータでテストすることが必須である。
本稿では,ExpエージェントとBGエージェントのライブインタラクションによって評価される実システムと合成マルチエージェントシステムとを区別する指標を提案する。
InTAGSを用いてシミュレータのキャリブレーションを行い、現状のWasserstein Generative Adversarial Networkアプローチと比較して、より現実的な市場データを生成することができることを示す。
論文 参考訳(メタデータ) (2023-09-04T19:56:18Z) - QTRAN++: Improved Value Transformation for Cooperative Multi-Agent
Reinforcement Learning [70.382101956278]
QTRANは、最大級の共同作用値関数を学習できる強化学習アルゴリズムである。
理論的な保証は強いが、複雑な環境での実証的な性能は劣っている。
そこで我々はQTRAN++という改良版を提案する。
論文 参考訳(メタデータ) (2020-06-22T05:08:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。