Defending the Edge: Representative-Attention for Mitigating Backdoor Attacks in Federated Learning
- URL: http://arxiv.org/abs/2505.10297v1
- Date: Thu, 15 May 2025 13:44:32 GMT
- Title: Defending the Edge: Representative-Attention for Mitigating Backdoor Attacks in Federated Learning
- Authors: Chibueze Peace Obioma, Youcheng Sun, Mustafa A. Mustafa,
- Abstract summary: heterogeneous edge devices produce diverse, non-independent, and identically distributed (non-IID) data.<n>We propose a novel representative-attention-based defense mechanism, named FeRA, to distinguish benign from malicious clients.<n>Our evaluation demonstrates FeRA's robustness across various FL scenarios, including challenging non-IID data distributions typical of edge devices.
- Score: 7.808916974942399
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Federated learning (FL) enhances privacy and reduces communication cost for resource-constrained edge clients by supporting distributed model training at the edge. However, the heterogeneous nature of such devices produces diverse, non-independent, and identically distributed (non-IID) data, making the detection of backdoor attacks more challenging. In this paper, we propose a novel federated representative-attention-based defense mechanism, named FeRA, that leverages cross-client attention over internal feature representations to distinguish benign from malicious clients. FeRA computes an anomaly score based on representation reconstruction errors, effectively identifying clients whose internal activations significantly deviate from the group consensus. Our evaluation demonstrates FeRA's robustness across various FL scenarios, including challenging non-IID data distributions typical of edge devices. Experimental results show that it effectively reduces backdoor attack success rates while maintaining high accuracy on the main task. The method is model-agnostic, attack-agnostic, and does not require labeled reference data, making it well suited to heterogeneous and resource-limited edge deployments.
Related papers
- FedP3E: Privacy-Preserving Prototype Exchange for Non-IID IoT Malware Detection in Cross-Silo Federated Learning [5.7494612007431805]
We propose FedP3E, a novel FL framework that supports indirect cross-client representation sharing while maintaining data privacy.<n>We evaluate FedP3E on the N-BaIoT dataset under realistic cross-silo scenarios with varying degrees of data imbalance.
arXiv Detail & Related papers (2025-07-09T20:07:35Z) - Robust Federated Learning Against Poisoning Attacks: A GAN-Based Defense Framework [0.6554326244334868]
Federated Learning (FL) enables collaborative model training across decentralized devices without sharing raw data.<n>We propose a privacy-preserving defense framework that leverages a Conditional Generative Adversarial Network (cGAN) to generate synthetic data at the server for authenticating client updates.
arXiv Detail & Related papers (2025-03-26T18:00:56Z) - FedCAP: Robust Federated Learning via Customized Aggregation and Personalization [13.17735010891312]
Federated learning (FL) has been applied to various privacy-preserving scenarios.
We propose FedCAP, a robust FL framework against both data heterogeneity and Byzantine attacks.
We show that FedCAP performs well in several non-IID settings and shows strong robustness under a series of poisoning attacks.
arXiv Detail & Related papers (2024-10-16T23:01:22Z) - BoBa: Boosting Backdoor Detection through Data Distribution Inference in Federated Learning [26.714674251814586]
Federated learning is susceptible to poisoning attacks due to its decentralized nature.
We propose a novel distribution-aware anomaly detection mechanism, BoBa, to address this problem.
arXiv Detail & Related papers (2024-07-12T19:38:42Z) - Certifiably Byzantine-Robust Federated Conformal Prediction [49.23374238798428]
We introduce a novel framework Rob-FCP, which executes robust federated conformal prediction effectively countering malicious clients.
We empirically demonstrate the robustness of Rob-FCP against diverse proportions of malicious clients under a variety of Byzantine attacks.
arXiv Detail & Related papers (2024-06-04T04:43:30Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
Federated Learning (FL) enables distributed participants to train a global model without sharing data directly to a central server.
Recent studies have revealed that FL is vulnerable to gradient inversion attack (GIA), which aims to reconstruct the original training samples.
We propose Client-side poisoning Gradient Inversion (CGI), which is a novel attack method that can be launched from clients.
arXiv Detail & Related papers (2023-09-14T03:48:27Z) - G$^2$uardFL: Safeguarding Federated Learning Against Backdoor Attacks
through Attributed Client Graph Clustering [116.4277292854053]
Federated Learning (FL) offers collaborative model training without data sharing.
FL is vulnerable to backdoor attacks, where poisoned model weights lead to compromised system integrity.
We present G$2$uardFL, a protective framework that reinterprets the identification of malicious clients as an attributed graph clustering problem.
arXiv Detail & Related papers (2023-06-08T07:15:04Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - FedCC: Robust Federated Learning against Model Poisoning Attacks [0.0]
Federated learning is a distributed framework designed to address privacy concerns.<n>It introduces new attack surfaces, which are especially prone when data is non-Independently and Identically Distributed.<n>We present FedCC, a simple yet effective novel defense algorithm against model poisoning attacks.
arXiv Detail & Related papers (2022-12-05T01:52:32Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
We study how hardening benign clients can affect the global model (and the malicious clients)
We propose a trigger reverse engineering based defense and show that our method can achieve improvement with guarantee robustness.
Our results on eight competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks.
arXiv Detail & Related papers (2022-10-23T22:24:03Z) - CrowdGuard: Federated Backdoor Detection in Federated Learning [39.58317527488534]
This paper presents a novel defense mechanism, CrowdGuard, that effectively mitigates backdoor attacks in Federated Learning.
CrowdGuard employs a server-located stacked clustering scheme to enhance its resilience to rogue client feedback.
The evaluation results demonstrate that CrowdGuard achieves a 100% True-Positive-Rate and True-Negative-Rate across various scenarios.
arXiv Detail & Related papers (2022-10-14T11:27:49Z) - Invariant Aggregator for Defending against Federated Backdoor Attacks [28.416262423174796]
Federated learning enables training high-utility models across several clients without directly sharing their private data.
As a downside, the federated setting makes the model vulnerable to various adversarial attacks in the presence of malicious clients.
We propose an invariant aggregator that redirects the aggregated update to invariant directions that are generally useful.
arXiv Detail & Related papers (2022-10-04T18:06:29Z) - Curse or Redemption? How Data Heterogeneity Affects the Robustness of
Federated Learning [51.15273664903583]
Data heterogeneity has been identified as one of the key features in federated learning but often overlooked in the lens of robustness to adversarial attacks.
This paper focuses on characterizing and understanding its impact on backdooring attacks in federated learning through comprehensive experiments using synthetic and the LEAF benchmarks.
arXiv Detail & Related papers (2021-02-01T06:06:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.