FedP3E: Privacy-Preserving Prototype Exchange for Non-IID IoT Malware Detection in Cross-Silo Federated Learning
- URL: http://arxiv.org/abs/2507.07258v1
- Date: Wed, 09 Jul 2025 20:07:35 GMT
- Title: FedP3E: Privacy-Preserving Prototype Exchange for Non-IID IoT Malware Detection in Cross-Silo Federated Learning
- Authors: Rami Darwish, Mahmoud Abdelsalam, Sajad Khorsandroo, Kaushik Roy,
- Abstract summary: We propose FedP3E, a novel FL framework that supports indirect cross-client representation sharing while maintaining data privacy.<n>We evaluate FedP3E on the N-BaIoT dataset under realistic cross-silo scenarios with varying degrees of data imbalance.
- Score: 5.7494612007431805
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As IoT ecosystems continue to expand across critical sectors, they have become prominent targets for increasingly sophisticated and large-scale malware attacks. The evolving threat landscape, combined with the sensitive nature of IoT-generated data, demands detection frameworks that are both privacy-preserving and resilient to data heterogeneity. Federated Learning (FL) offers a promising solution by enabling decentralized model training without exposing raw data. However, standard FL algorithms such as FedAvg and FedProx often fall short in real-world deployments characterized by class imbalance and non-IID data distributions -- particularly in the presence of rare or disjoint malware classes. To address these challenges, we propose FedP3E (Privacy-Preserving Prototype Exchange), a novel FL framework that supports indirect cross-client representation sharing while maintaining data privacy. Each client constructs class-wise prototypes using Gaussian Mixture Models (GMMs), perturbs them with Gaussian noise, and transmits only these compact summaries to the server. The aggregated prototypes are then distributed back to clients and integrated into local training, supported by SMOTE-based augmentation to enhance representation of minority malware classes. Rather than relying solely on parameter averaging, our prototype-driven mechanism enables clients to enrich their local models with complementary structural patterns observed across the federation -- without exchanging raw data or gradients. This targeted strategy reduces the adverse impact of statistical heterogeneity with minimal communication overhead. We evaluate FedP3E on the N-BaIoT dataset under realistic cross-silo scenarios with varying degrees of data imbalance.
Related papers
- FedGraM: Defending Against Untargeted Attacks in Federated Learning via Embedding Gram Matrix [8.745475105649192]
Federated Learning (FL) enables geographically distributed clients to collaboratively train machine learning models by sharing only their local models.<n>FL is vulnerable to untargeted attacks that aim to degrade the global model's performance on the underlying data distribution.<n>We propose a novel robust aggregation method, FedGraM, designed to defend against untargeted attacks in FL.
arXiv Detail & Related papers (2025-05-20T07:26:54Z) - Defending the Edge: Representative-Attention for Mitigating Backdoor Attacks in Federated Learning [7.808916974942399]
heterogeneous edge devices produce diverse, non-independent, and identically distributed (non-IID) data.<n>We propose a novel representative-attention-based defense mechanism, named FeRA, to distinguish benign from malicious clients.<n>Our evaluation demonstrates FeRA's robustness across various FL scenarios, including challenging non-IID data distributions typical of edge devices.
arXiv Detail & Related papers (2025-05-15T13:44:32Z) - Privacy Preserving and Robust Aggregation for Cross-Silo Federated Learning in Non-IID Settings [1.8434042562191815]
Federated Averaging remains the most widely used aggregation strategy in federated learning.<n>Our method relies solely on gradient updates, eliminating the need for any additional client metadata.<n>Our results establish the effectiveness of gradient masking as a practical and secure solution for federated learning.
arXiv Detail & Related papers (2025-03-06T14:06:20Z) - Asynchronous Personalized Federated Learning through Global Memorization [16.630360485032163]
Federated Learning offers a privacy preserving solution by enabling collaborative model training across decentralized devices without centralizing sensitive data.<n>We propose the Asynchronous Personalized Federated Learning framework, which empowers clients to develop personalized models using a server side semantic generator.<n>This generator, trained via data free knowledge transfer under global model supervision, enhances client data diversity by producing both seen and unseen samples.<n>To counter the risks of synthetic data impairing training, we introduce a decoupled model method, ensuring robust personalization.
arXiv Detail & Related papers (2025-03-01T09:00:33Z) - Robust Federated Learning in the Face of Covariate Shift: A Magnitude Pruning with Hybrid Regularization Framework for Enhanced Model Aggregation [1.519321208145928]
Federated Learning (FL) offers a promising framework for individuals aiming to collaboratively develop a shared model.<n> variations in data distribution among clients can profoundly affect FL methodologies, primarily due to instabilities in the aggregation process.<n>We propose a novel FL framework, combining individual parameter pruning and regularization techniques to improve the robustness of individual clients' models to aggregate.
arXiv Detail & Related papers (2024-12-19T16:22:37Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated learning (FL) is a privacy-preserving distributed management framework based on collaborative model training of distributed devices in edge networks.
Recent studies have shown that FL is vulnerable to adversarial examples, leading to a significant drop in its performance.
In this work, we adopt the adversarial training (AT) framework to improve the robustness of FL models against adversarial example (AE) attacks.
arXiv Detail & Related papers (2024-03-05T09:18:29Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
Federated Learning (FL) enables distributed participants to train a global model without sharing data directly to a central server.
Recent studies have revealed that FL is vulnerable to gradient inversion attack (GIA), which aims to reconstruct the original training samples.
We propose Client-side poisoning Gradient Inversion (CGI), which is a novel attack method that can be launched from clients.
arXiv Detail & Related papers (2023-09-14T03:48:27Z) - Mitigating Cross-client GANs-based Attack in Federated Learning [78.06700142712353]
Multi distributed multimedia clients can resort to federated learning (FL) to jointly learn a global shared model.
FL suffers from the cross-client generative adversarial networks (GANs)-based (C-GANs) attack.
We propose Fed-EDKD technique to improve the current popular FL schemes to resist C-GANs attack.
arXiv Detail & Related papers (2023-07-25T08:15:55Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
Federated Learning (FL) has emerged as an effective learning paradigm for distributed computation.
This work proposes a novel FL framework that requires only partial GAN model sharing.
Named as PS-FedGAN, this new framework enhances the GAN releasing and training mechanism to address heterogeneous data distributions.
arXiv Detail & Related papers (2023-05-19T05:39:40Z) - FedCC: Robust Federated Learning against Model Poisoning Attacks [0.0]
Federated learning is a distributed framework designed to address privacy concerns.<n>It introduces new attack surfaces, which are especially prone when data is non-Independently and Identically Distributed.<n>We present FedCC, a simple yet effective novel defense algorithm against model poisoning attacks.
arXiv Detail & Related papers (2022-12-05T01:52:32Z) - FedMix: Approximation of Mixup under Mean Augmented Federated Learning [60.503258658382]
Federated learning (FL) allows edge devices to collectively learn a model without directly sharing data within each device.
Current state-of-the-art algorithms suffer from performance degradation as the heterogeneity of local data across clients increases.
We propose a new augmentation algorithm, named FedMix, which is inspired by a phenomenal yet simple data augmentation method, Mixup.
arXiv Detail & Related papers (2021-07-01T06:14:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.