論文の概要: Deconstructing Subset Construction -- Reducing While Determinizing
- arxiv url: http://arxiv.org/abs/2505.10319v1
- Date: Thu, 15 May 2025 14:04:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-16 22:29:06.34726
- Title: Deconstructing Subset Construction -- Reducing While Determinizing
- Title(参考訳): Deconstructing Subset Construction -- Determinizing における削減
- Authors: John Nicol, Markus Frohme,
- Abstract要約: 我々は,NFAのカノン化問題に対する新たな視点を提示する。
我々は,フライ時の探査スペースを削減するため,中間的な最小化手順を導入する。
当社のアプローチは,ユーザが実験を行うためのオープンソースライブラリとして実装されています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel perspective on the NFA canonization problem, which introduces intermediate minimization steps to reduce the exploration space on-the-fly. Essential to our approach are so-called equivalence registries which manage information about equivalent states and allow for incorporating further optimization techniques such as convexity closures or simulation to boost performance. Due to the generality of our approach, these concepts can be embedded in classic subset construction or Brzozowski's approach. We evaluate our approach on a set of real-world examples from automatic sequences and observe that we are able to improve especially worst-case scenarios. We implement our approach in an open-source library for users to experiment with.
- Abstract(参考訳): 本研究では,NFAカノン化問題に対する新たな視点として,フライ時の探索空間を最小化するための中間的最小化手順を提案する。
提案手法の本質は,等価状態に関する情報を管理し,凸性クロージャやシミュレーションなどのさらなる最適化手法を取り入れて性能を向上させる,いわゆる等価レジストリである。
このアプローチの一般化により、これらの概念は古典的な部分集合の構成やブレゾゾフスキのアプローチに埋め込まれる。
自動シーケンスから実世界の実例の集合に対するアプローチを評価し、特に最悪のシナリオを改善することができることを観察する。
当社のアプローチは,ユーザが実験を行うためのオープンソースライブラリとして実装されています。
関連論文リスト
- A Diffusion Model Framework for Unsupervised Neural Combinatorial Optimization [7.378582040635655]
現在のディープラーニングアプローチは、正確なサンプル確率を生み出す生成モデルに依存している。
この研究は、この制限を解除し、高度に表現力のある潜在変数モデルを採用する可能性を開放する手法を導入する。
我々は,データフリーなコンビネーション最適化におけるアプローチを実験的に検証し,幅広いベンチマーク問題に対して新しい最先端の手法を実現することを実証した。
論文 参考訳(メタデータ) (2024-06-03T17:55:02Z) - Consciousness-Inspired Spatio-Temporal Abstractions for Better Generalization in Reinforcement Learning [83.41487567765871]
Skipperはモデルベースの強化学習フレームワークである。
これは、与えられたタスクをより小さく、より管理しやすいサブタスクに自動的に一般化する。
環境の関連部分には、スパースな意思決定と集中した抽象化を可能にする。
論文 参考訳(メタデータ) (2023-09-30T02:25:18Z) - Open-Set Likelihood Maximization for Few-Shot Learning [36.97433312193586]
我々はFew-Shot Open-Set Recognition (FSOSR) 問題、すなわちいくつかのラベル付きサンプルしか持たないクラスのインスタンスを分類する問題に取り組む。
提案手法では,推論時に非競合なクエリインスタンスを利用する。
既存のトランスダクティブ手法はオープンセットのシナリオではうまく動作しないという観測により,最大極大原理の一般化を提案する。
論文 参考訳(メタデータ) (2023-01-20T01:56:19Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
教師なしメタラーニングのメソッドであるCACTUsは、擬似ラベル付きクラスタリングベースのアプローチである。
このアプローチはモデルに依存しないため、教師付きアルゴリズムと組み合わせてラベルのないデータから学習することができる。
このことの核となる理由は、埋め込み空間においてクラスタリングに優しい性質が欠如していることである。
論文 参考訳(メタデータ) (2022-09-27T19:04:36Z) - Exploiting Temporal Structures of Cyclostationary Signals for
Data-Driven Single-Channel Source Separation [98.95383921866096]
単一チャネルソース分離(SCSS)の問題点について検討する。
我々は、様々なアプリケーション領域に特に適するサイクロ定常信号に焦点を当てる。
本稿では,最小MSE推定器と競合するU-Netアーキテクチャを用いたディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2022-08-22T14:04:56Z) - Application-Driven Learning: A Closed-Loop Prediction and Optimization Approach Applied to Dynamic Reserves and Demand Forecasting [41.94295877935867]
我々は、予測と意思決定のプロセスが統合され、協調最適化される新しいクローズドループフレームワークであるアプリケーション駆動学習を提案する。
提案手法は拡張性があり,標準のオープンループ手法よりも一貫して性能が向上することを示す。
論文 参考訳(メタデータ) (2021-02-26T02:43:28Z) - Adaptive Discretization for Model-Based Reinforcement Learning [10.21634042036049]
本稿では,適応離散化手法を導入し,効率的なモデルに基づくエピソード強化学習アルゴリズムを設計する。
我々のアルゴリズムは、空間の適応的な離散化を維持するために拡張された楽観的なワンステップ値反復に基づいている。
論文 参考訳(メタデータ) (2020-07-01T19:36:46Z) - Local Propagation in Constraint-based Neural Network [77.37829055999238]
ニューラルネットワークアーキテクチャの制約に基づく表現について検討する。
本稿では,いわゆるアーキテクチャ制約を満たすのに適した簡単な最適化手法について検討する。
論文 参考訳(メタデータ) (2020-02-18T16:47:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。