Hierarchical Document Refinement for Long-context Retrieval-augmented Generation
- URL: http://arxiv.org/abs/2505.10413v1
- Date: Thu, 15 May 2025 15:34:15 GMT
- Title: Hierarchical Document Refinement for Long-context Retrieval-augmented Generation
- Authors: Jiajie Jin, Xiaoxi Li, Guanting Dong, Yuyao Zhang, Yutao Zhu, Yongkang Wu, Zhonghua Li, Qi Ye, Zhicheng Dou,
- Abstract summary: LongRefiner is an efficient plug-and-play refiner that leverages the inherent structural characteristics of long documents.<n>LongRefiner achieves competitive performance in various scenarios while using 10x fewer computational costs and latency compared to the best baseline.
- Score: 28.421675216147374
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Real-world RAG applications often encounter long-context input scenarios, where redundant information and noise results in higher inference costs and reduced performance. To address these challenges, we propose LongRefiner, an efficient plug-and-play refiner that leverages the inherent structural characteristics of long documents. LongRefiner employs dual-level query analysis, hierarchical document structuring, and adaptive refinement through multi-task learning on a single foundation model. Experiments on seven QA datasets demonstrate that LongRefiner achieves competitive performance in various scenarios while using 10x fewer computational costs and latency compared to the best baseline. Further analysis validates that LongRefiner is scalable, efficient, and effective, providing practical insights for real-world long-text RAG applications. Our code is available at https://github.com/ignorejjj/LongRefiner.
Related papers
- Ref-Long: Benchmarking the Long-context Referencing Capability of Long-context Language Models [36.69535336525585]
Long-context language models (LCLMs) have exhibited impressive capabilities in long-context understanding tasks.<n>Long-context referencing is a crucial task that requires LCLMs to attribute items of interest to specific parts of long-context data.<n>This paper proposes Ref-Long, a novel benchmark designed to assess the long-context referencing capability of LCLMs.
arXiv Detail & Related papers (2025-07-13T06:17:53Z) - OkraLong: A Flexible Retrieval-Augmented Framework for Long-Text Query Processing [9.606858192855753]
Large Language Models (LLMs) encounter challenges in efficiently processing long-text queries.<n>We propose OkraLong, a novel framework that flexibly optimize the entire processing workflow.<n>OkraLong not only enhances answer accuracy but also achieves cost-effectiveness across a variety of datasets.
arXiv Detail & Related papers (2025-03-04T13:21:47Z) - WildLong: Synthesizing Realistic Long-Context Instruction Data at Scale [86.25450054683172]
WildLong extracts meta-information from real user queries to produce scalable data.<n>It supports multi-document reasoning, such as cross-document comparison and aggregation.<n>It surpasses existing open-source long-context-optimized models across benchmarks.
arXiv Detail & Related papers (2025-02-23T18:59:09Z) - Generalizing From Short to Long: Effective Data Synthesis for Long-Context Instruction Tuning [103.65680870130839]
We investigate how to design instruction data for the post-training phase of a long context pre-trained model.<n>Our controlled study reveals that models instruction-tuned on short contexts can effectively generalize to longer ones.<n>Based on these findings, we propose context synthesis, a novel data synthesis framework.
arXiv Detail & Related papers (2025-02-21T17:02:40Z) - Does RAG Really Perform Bad For Long-Context Processing? [15.889864680212147]
RetroLM is a novel framework for long-context processing.<n>Unlike traditional methods, RetroLM employs KV-level retrieval augmentation.<n>Building on this framework, we develop a specialized retriever for precise retrieval of critical pages.
arXiv Detail & Related papers (2025-02-17T05:02:25Z) - Leave No Document Behind: Benchmarking Long-Context LLMs with Extended Multi-Doc QA [71.04146366608904]
Long-context modeling capabilities have garnered widespread attention, leading to the emergence of Large Language Models (LLMs) with ultra-context windows.
We propose a novel long-context benchmark, Loong, aligning with realistic scenarios through extended multi-document question answering (QA)
Loong introduces four types of tasks with a range of context lengths: Spotlight Locating, Comparison, Clustering, and Chain of Reasoning.
arXiv Detail & Related papers (2024-06-25T09:42:56Z) - LongSkywork: A Training Recipe for Efficiently Extending Context Length in Large Language Models [61.12177317970258]
LongSkywork is a long-context Large Language Model capable of processing up to 200,000 tokens.
We develop two novel methods for creating synthetic data.
LongSkywork achieves outstanding performance on a variety of long-context benchmarks.
arXiv Detail & Related papers (2024-06-02T03:34:41Z) - Long Context is Not Long at All: A Prospector of Long-Dependency Data for Large Language Models [13.091271774417867]
Long-context modeling capabilities are important for large language models (LLMs) in various applications.
We propose a data mining framework textbfProLong that can assign each training sample with a long dependency score.
Comprehensive experiments on multiple benchmarks indicate that ProLong effectively identifies documents that carry long dependencies.
arXiv Detail & Related papers (2024-05-28T07:36:56Z) - Long Context Alignment with Short Instructions and Synthesized Positions [56.1267385315404]
This paper introduces Step-Skipping Alignment (SkipAlign)
It is a new technique designed to enhance the long-context capabilities of Large Language Models (LLMs)
With a careful selection of the base model and alignment datasets, SkipAlign with only 6B parameters achieves it's best performance and comparable with strong baselines like GPT-3.5-Turbo-16K on LongBench.
arXiv Detail & Related papers (2024-05-07T01:56:22Z) - Effective Long-Context Scaling of Foundation Models [90.57254298730923]
We present a series of long-context LLMs that support effective context windows of up to 32,768 tokens.
Our models achieve consistent improvements on most regular tasks and significant improvements on long-context tasks over Llama 2.
arXiv Detail & Related papers (2023-09-27T21:41:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.