Hopf Bifurcation of Nonlinear Non-Hermitian Skin Effect
- URL: http://arxiv.org/abs/2505.10469v1
- Date: Thu, 15 May 2025 16:21:42 GMT
- Title: Hopf Bifurcation of Nonlinear Non-Hermitian Skin Effect
- Authors: Kohei Kawabata, Daichi Nakamura,
- Abstract summary: We show that nonlinearity destabilizes skin states and gives rise to the emergence of delocalized states associated with limit cycles in phase space.<n>Our work shows a significant role of nonlinearity in the skin effect and uncovers rich phenomena arising from the interplay between non-Hermiticity and nonlinearity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The non-Hermitian skin effect, nonreciprocity-induced anomalous localization of an extensive number of eigenstates, represents a hallmark of non-Hermitian topological systems with no analogs in Hermitian systems. Despite its significance across various open classical and quantum systems, the influence of nonlinearity has remained largely unclear. Here, we reveal the Hopf bifurcation of the nonlinear skin effect as a critical phenomenon unique to nonlinear non-Hermitian systems. We demonstrate that nonlinearity destabilizes skin states and instead gives rise to the emergence of delocalized states associated with limit cycles in phase space. We also uncover the algebraically localized critical skin effect precisely at the Hopf bifurcation point. We illustrate these behavior in a nonlinear extension of the Hatano-Nelson model in both continuum and lattice. Our work shows a significant role of nonlinearity in the skin effect and uncovers rich phenomena arising from the interplay between non-Hermiticity and nonlinearity.
Related papers
- Lindbladian versus Postselected Non-Hermitian Topology [44.99833362998488]
Many-body systems with loss and gain are typically better described by mixed-state open quantum dynamics upon a postselection of measurement outcomes.<n>We show that the non-Hermitian skin effect and its relationship to a bulk winding number in one spatial dimension can survive without postselection.<n>We also identify a case where removing postselection induces a skin effect from otherwise topologically trivial non-Hermitian dynamics.
arXiv Detail & Related papers (2025-07-09T18:01:22Z) - Non-Hermitian topology and skin modes in the continuum via parametric processes [44.99833362998488]
We show that Hermitian, nonlocal parametric pairing processes can induce non-Hermitian topology and skin modes.<n>Our model, stabilized by local dissipation, reveals exceptional points that spawn a tilted diabolical line in the dispersion.
arXiv Detail & Related papers (2025-05-05T16:38:20Z) - Exceptional Points and Stability in Nonlinear Models of Population Dynamics having $\mathcal{PT}$ symmetry [49.1574468325115]
We analyze models governed by the replicator equation of evolutionary game theory and related Lotka-Volterra systems of population dynamics.<n>We study the emergence of exceptional points in two cases: (a) when the governing symmetry properties are tied to global properties of the models, and (b) when these symmetries emerge locally around stationary states.
arXiv Detail & Related papers (2024-11-19T02:15:59Z) - Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.<n>These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.<n>We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Critical spin models from holographic disorder [49.1574468325115]
We study the behavior of XXZ spin chains with a quasiperiodic disorder not present in continuum holography.
Our results suggest the existence of a class of critical phases whose symmetries are derived from models of discrete holography.
arXiv Detail & Related papers (2024-09-25T18:00:02Z) - Exceptional points and non-Hermitian skin effects under nonlinearity of eigenvalues [0.0]
nonlinear systems may exhibit exceptional points and non-Hermitian skin effects which are unique non-Hermitian topological phenomena.
Our analysis elucidates that exceptional points may emerge even for systems without an internal degree of freedom where the equation is single component.
arXiv Detail & Related papers (2024-07-30T15:15:39Z) - A class of stable nonlinear non-Hermitian skin modes [0.0]
The non-Hermitian skin effect (NHSE) is a well-known phenomenon in open topological systems.
NHSE causes a large number of eigenstates to become localized at the boundary.
This paper introduces a method for achieving a stable localized state in a nonlinear finite lattice.
arXiv Detail & Related papers (2024-07-11T21:55:01Z) - Entanglement Phase Transition Induced by the Non-Hermitian Skin Effect [0.0]
We show that the skin effect induces a nonequilibrium quantum phase transition in the entanglement dynamics.
We also show that the skin effect leads to the purification and the reduction of von Neumann entropy even in Markovian open quantum systems.
arXiv Detail & Related papers (2022-06-11T00:27:36Z) - Nonlinear non-Hermitian skin effect [0.0]
Distant boundaries in linear non-Hermitian lattices can dramatically change energy eigenvalues in a nonlocal way.
We show that fractal and continuum bands arise in a long lattice governed by a nonreciprocal discrete nonlinear Schrodinger equation.
We show that stationary solutions are localized at the edge in the continuum band.
arXiv Detail & Related papers (2021-06-08T11:32:22Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Critical non-Hermitian Skin Effect [2.6109033135086777]
This work uncovers a new class of criticality where eigenenergies and eigenstates of non-Hermitian lattice systems jump discontinuously across a critical point in the thermodynamic limit.
We present stimulating examples with anomalous scaling behavior regarding spectrum, correlation functions, entanglement entropy, and scale-free wavefunctions that decay exponentially rather than power-law.
arXiv Detail & Related papers (2020-03-06T05:48:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.